五色定理

维基百科,自由的百科全书
跳转至: 导航搜索

五色定理图论中的一个结论:将一个平面分成若干区域,给这些区域染色,且保证任意相邻区域没有相同颜色,那么所需颜色不超过五种。五色定理是比四色定理弱的定理,而比四色定理更容易证明。1879年,阿尔弗雷德·布雷·肯普给出了四色定理的一个证明,当时为人所接受,但11年后,珀西·约翰·希伍德却发现了肯普的证明中存在错误,他把肯普的证明加以修改,得到了五色定理。

相关资料[编辑]

  • Heawood, P. J., Map-Colour Theorems, Quarterly Journal of Mathematics, Oxford, 1890, 24: 332–338