亥姆霍兹分解

维基百科,自由的百科全书
跳转至: 导航搜索

物理学数学中的向量分析中,亥姆霍兹定理,或称向量分析基本定理),宣称对于任意足够平滑、快速衰减的三维矢量场可解为一个保守向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。

这意味着任何矢量场F,都可以视为两个势场(純量勢φ向量勢A)之和。

定理內容[编辑]

假定F為定義在R3裡一個有界區域V裡的二次連續可微向量場,且SV的包圍面,則F可被分解成無旋度及無散度兩部份:[1]

\mathbf{F}=-\boldsymbol{\nabla}\Phi+\boldsymbol{\nabla}\times\mathbf{A}

其中

\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'


\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'


如果V就是R3,且F在無窮遠處消失的比1/r快,則純量勢及向量勢的第二項為零,也就是說 [2]

\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'


\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'

推導[编辑]

假定我們有一個向量函數\mathbf{F}\left(\mathbf{r}\right),且其旋度\boldsymbol{\nabla}\times\mathbf{F}及散度\boldsymbol{\nabla}\cdot\mathbf{F}已知。利用狄拉克δ函数可將函數改寫成

\delta^3\left(\mathbf{r}-\mathbf{r}'\right)=-\frac{1}{4\pi}\nabla^{2}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}
\mathbf{F}\left(\mathbf{r}\right)=\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\delta^3\left(\mathbf{r}-\mathbf{r}'\right)\mathrm{d}V'=\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\left(-\frac{1}{4\pi}\nabla^{2}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\right)\mathrm{d}V'=-\frac{1}{4\pi}\nabla^{2}\int_{V}\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'

利用以下等式

\nabla^{2}\mathbf{a}=\boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot\mathbf{a}\right)-\boldsymbol{\nabla}\times\left(\boldsymbol{\nabla}\times\mathbf{a}\right)

可得

\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[\boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot\int_{V}\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\boldsymbol{\nabla}\times\left(\boldsymbol{\nabla}\times\int_{V}\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]
=-\frac{1}{4\pi}\left[\boldsymbol{\nabla}\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\cdot\boldsymbol{\nabla}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)+\boldsymbol{\nabla}\times\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\times\boldsymbol{\nabla}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]

注意到\boldsymbol{\nabla}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}=-\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|},我們可將上式改寫成

\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\cdot\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\boldsymbol{\nabla}\times\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\times\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]


利用以下二等式,

\mathbf{a}\cdot\boldsymbol{\nabla}\psi=-\psi\left(\boldsymbol{\nabla}\cdot\mathbf{a}\right)+\boldsymbol{\nabla}\cdot\left(\psi\mathbf{a}\right)

\mathbf{a}\times\boldsymbol{\nabla}\psi=\psi\left(\boldsymbol{\nabla}\times\mathbf{a}\right)-\boldsymbol{\nabla}\times\left(\psi\mathbf{a}\right)

可得

\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left(
-\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
+\int_{V}\boldsymbol{\nabla}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
\right)-\boldsymbol{\nabla}\times\left(
\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\int_{V}\boldsymbol{\nabla}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
\right)\right]


利用散度定理,方程式可改寫成

\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left(
-\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
+\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'
\right)-\boldsymbol{\nabla}\times\left(
\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'
\right)\right]
=
-\boldsymbol{\nabla}\left[\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'\right]
+\boldsymbol{\nabla}\times\left[\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'\right]


定義

\Phi\left(\mathbf{r}\right)\equiv\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'


\mathbf{A}\left(\mathbf{r}\right)\equiv\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'
-\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'


所以

\mathbf{F}=-\boldsymbol{\nabla}\Phi+\boldsymbol{\nabla}\times\mathbf{A}


利用傅利葉轉換做推導[编辑]

F改寫成傅利葉轉換的形式:

\vec{\mathbf{F}}(\vec{r}) = \iiint \vec{\mathbf{G}}(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega}

純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。 現在考慮以下純量場及向量場:

\begin{array}{lll} G_\Phi(\vec{\omega}) =   i\, \frac{\displaystyle \vec{\mathbf{G}}(\vec{\omega}) \cdot \vec{\omega}}{||\vec{\omega}||^2} & \quad\quad &
\vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) = i\, \vec{\omega} \times \left( \vec{\mathbf{G}}(\vec{\omega}) + i G_\Phi(\vec{\omega}) \, \vec{\omega} \right)  \\
 && \\
\Phi(\vec{r}) = \displaystyle \iiint G_\Phi(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} & & \vec{\mathbf{A}}(\vec{r}) = \displaystyle \iiint  \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} \end{array}

所以

 \vec{\mathbf{G}}(\vec{\omega}) = - i \,\vec{\omega} \, G_\Phi(\vec{\omega})  + i \, \vec{\omega} \times \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega})

\begin{array}{lll}\vec{\mathbf{F}}(\vec{r}) &=& \displaystyle - \iiint i \, \vec{\omega}\, G_\Phi(\vec{\omega})  \, e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega}
+  \iiint i \, \vec{\omega} \times \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} \\
&=& - \boldsymbol{\nabla} \Phi(\vec{r}) +  \boldsymbol{\nabla} \times \vec{\mathbf{A}}(\vec{r})
\end{array}


参考文献[编辑]

  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101
  • C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." Mathematical Methods in the Applied Sciences, 21, 823–864, 1998.
  • R. Dautray and J.-L. Lions. Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
  • V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.

外部链接[编辑]

  • ^ Helmholtz' Theorem. University of Vermont. 
  • ^ David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1999, p. 556.