代數閉域

维基百科,自由的百科全书
跳转至: 导航搜索

數學上,一個F被稱作代數閉域若且唯若任何係數属于F且次數大於零的單變數多項式F裡至少有一個

例子[编辑]

舉例明之,實數域並非代數閉域,因為下列實係數多項式無實根:

x^2+1=0

同理可證有理數域非代數閉域。此外,有限域也不是代數閉域,因為若a_1, \ldots, a_n列出F的所有元素,則下列多項式在F中沒有根:

(x-a_1)(x-a_2)\cdots(x-a_n)+1\,

反之,複數域則是代數閉域;這是代數基本定理的內容。另一個代數閉域之例子是代數數域。

等價的刻劃[编辑]

給定一個域F,其代數封閉性與下列每一個性質等價:

不可约多项式若且唯若一次多项式[编辑]

F是代数闭域,当且仅当环F[x]中的不可约多项式是而且只能是一次多项式。

“一次多项式是不可约的”的断言对于任何域都是正确的。如果F是代数闭域,p(x)是F[x]的一个不可约多项式,那么它有某个根a,因此p(x)是x − a的一个倍数。由于p(x)是不可约的,这意味着对于某个k ∈ F \ {0},有p(x) = k(x − a)。另一方面,如果F不是代数闭域,那么存在F[x]内的某个非常数多项式p(x)在F内没有根。设q(x)为p(x)的某个不可约因子。由于p(x)在F内没有根,因此q(x)在F内也没有根。所以,q(x)的次数大于一,因为每一个一次多项式在F内都有一个根。

每一个多项式都是一次多项式的乘积[编辑]

F是代数闭域,当且仅当每一个系数位于次数F内的n ≥ 1的多项式p(x)都可以分解成线性因子。也就是说,存在域F的元素k, x1, x2, ……, xn,使得p(x) = k(x − x1)(x − x2) ··· (x − xn)。

如果F具有这个性质,那么显然F[x]内的每一个非常数多项式在F内都有根;也就是说,F是代数闭域。另一方面,如果F是代数闭域,那么根据前一个性质,以及对于任何域K,任何K[x]内的多项式都可以写成不可约多项式的乘积,推出这个性质对F成立。

Fn的每一个自同态都有特征向量[编辑]

F是代数闭域,当且仅当对于每一个自然数n,任何从Fn到它本身的线性映射都有某个特征向量

Fn自同态具有特征向量,当且仅当它的特征多项式具有某个根。因此,如果F是代数闭域,每一个Fn的自同态都有特征向量。另一方面,如果每一个Fn的自同态都有特征向量,设p(x)为F[x]的一个元素。除以它的首项系数,我们便得到了另外一个多项式q(x),它有根当且仅当p(x)有根。但如果q(x) = xn + an − 1xn − 1+ ··· + a0,那么q(x)是以下友矩阵的特征多项式:

\begin{pmatrix}0&0&\cdots&0&-a_0\\1&0&\cdots&0&-a_1\\0&1&\cdots&0&-a_2\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&\cdots&1&-a_{n-1}\end{pmatrix}.

有理表达式的分解[编辑]

F是代数闭域,当且仅当每一个系数位于F内的一元有理函数都可以写成一个多项式函数与若干个形为a/(x − b)n的有理函数之和,其中n是自然数,abF的元素。

如果F是代数闭域,那么由于F[x]内的不可约多项式都是一次的,根据部分分式分解的定理,以上的性质成立。

而另一方面,假设以上的性质对于域F成立。设p(x)为F[x]内的一个不可约元素。那么有理函数1/p可以写成多项式函数q与若干个形为a/(x − b)n的有理函数之和。因此,有理表达式

\frac1{p(x)}-q(x)=\frac{1-p(x)q(x)}{p(x)}

可以写成两个多项式的商,其中分母是一次多项式的乘积。由于p(x)是不可约的,它一定能整除这个乘积,因此它也一定是一个一次多项式。

代數閉包[编辑]

E \supset F為代數擴張,且E是代數閉域,則稱EF的一個代數閉包。可以視之為包含F的最小的代數閉域。

若我們承認佐恩引理(或其任一等價陳述),則任何域都有代數閉包。設E, E'為任兩個F的代數閉包,則存在環同構\sigma: E \stackrel{\sim}{\rightarrow} E'使得\sigma|_F = \mathrm{id}_F;代數閉包在此意義上是唯一的,通常記作 F^\mathrm{alg}\bar{F}

文獻[编辑]