伊藤积分

维基百科,自由的百科全书
跳转至: 导航搜索
布朗运动及布朗运动的伊藤积分

伊藤微积分英语Itō calculus)得名自日本數學家伊藤清,是將微積分的概念擴展到隨機過程中,像布朗运动維納過程)就可以用伊藤微积分進行分析。主要應用在金融數學隨機微分方程中。伊藤微积分的中心概念是伊藤积分,是將傳統的黎曼-斯蒂爾傑斯積分延伸到隨機過程中,隨機過程一方面是一個隨機變數,而且也是一個不可微分的函數。

藉由伊藤积分,可以將一個隨機過程(被积分函数)對另一個隨機過程(積分變數)進行積分。積分變數一般會布朗运动。從0t的積分結果是一個隨機變數。此隨機變數定義為一特定隨機變數序列的極限(有許多等效的方式可建構上述的定義)。

伊藤积分是对半鞅X以及随机过程H的积分

\int_0^t H\,dX = \lim_{n\rightarrow\infty} \sum_{t_{i-1},t_i\in\pi_n}H_{t_{i-1}}(X_{t_i}-X_{t_{i-1}}).

有關條目[编辑]