伽羅瓦上同調

维基百科,自由的百科全书
跳转至: 导航搜索

數學中,伽羅瓦上同調是一套用群上同調研究伽羅瓦群的作用的技術。具體言之,假設伽羅瓦群 G = G_{L/K} 作用在一個群 A(通常是數論中出現的代數結構,如 L, L^\times, C_L 等等)上,伽羅瓦上同調研究相關的群上同調 H^i(G,A)。這些群通常具有重要的數論或算術代數幾何意義。

伽羅瓦上同調是現代代數數論的基石之一。

在代數數論中的應用[编辑]

伽羅瓦上同調最早在1950年代被提出,主要與克勞德·謝瓦萊在類域論上的工作相關。這套理論的目的在以群上同調「代數地」闡釋類域論,避免使用L-函數哈瑟原理在伽羅瓦上同調的框架下能得到清晰的描述。

在代數幾何中的應用[编辑]

伽羅瓦上同調關係到算術代數幾何中的許多重要問題,例如橢圓曲線上的整點個數。作為下降理論在平展拓撲上的應用,第一個伽羅瓦上同調群分類了概形 \mathrm{Spec}(K) 上的扭子,這是主叢在代數幾何上的推廣。藉著下降理論,可以用伽羅瓦上同調研究二次型式中心單代數與 Severi-Brauer 簇等等結構。

文獻[编辑]

  • Serre, Jean-Pierre (2002), Galois cohomology, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, MR1867431, ISBN 978-3-540-42192-4, translation of Cohomologie Galoisienne, Springer-Verlag Lecture Notes 5 (1964).