傅里叶变换

维基百科,自由的百科全书
跳转至: 导航搜索

傅里叶变换法语Transformation de Fourier英语Fourier transform)是一种線性的积分变换,常在将信号在时域(或空域)和频域之间变换时使用,在物理学工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。

经过傅里叶变换而生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦或其频谱。傅里叶变换是可逆的,即可通过 \hat f 确定其原函数 f。通常情况下,f实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅相位

“傅里叶变换”一词既可以指变换操作本身(将函数 f 进行傅里叶变换),又可以指该操作所生成的复数函数(\hat ff 的傅里叶变换)。

定义[编辑]

一般情况下,若「傅里叶变换」一词不加任何限定语,则指的是「连续傅里叶变换」(连续函数的傅里叶变换)。定义傅里叶变换有许多不同的方式。本文中采用如下的定义:(连续)傅里叶变换将平方可积的函数f : \mathbb R \rightarrow \mathbb C表示成复指数函数的积分或级数形式。

\hat{f}(\xi) = \int_{-\infty}^\infty f(x)\ e^{- 2\pi i x \xi}\,dxξ为任意实数

当自变量x表示时间(以秒为单位),变换变量ξ表示频率(以赫兹为单位)。在适当条件下,\hat f可由逆变换(inverse Fourier transform)由下式确定f

f(x) = \int_{-\infty}^\infty \hat f(\xi)\ e^{2 \pi i \xi x}\,d\xix为任意实数。

傅里叶逆定理提出f可由\hat f确定,傅立叶在《热分析理论》(Analytical Theory of Heat)中首次引入这个定理。虽然现在标准下的证明直到很久以后才出现。f\hat{f}常常被称为傅立叶积分对傅立叶变换对

简介[编辑]

傅里叶变换将函数的时域(红色)与频域(蓝色)相关联。频谱中的不同成分频率在频域中以峰值形式表示。

傅里叶变换源自对傅里叶级数的研究。在对傅里叶级数的研究中,复杂的周期函数可以用一系列简单的正弦余弦波之和表示。傅里叶变换是对傅里叶级数的扩展,由它表示的函数的周期趋近于无穷。

中文译名[编辑]

英语Fourier transform法语Transformée de Fourier 有多个中文译名,常见的有「傅里叶变换」、「傅立叶变换」、「付立叶变换」、「傅利葉轉換」、「傅氏轉換」及「傅氏變換」等等。为方便起见,本文统一写作「傅里叶变换」。

应用[编辑]

傅里叶变换在物理学声学光学结构动力学量子力學数论组合数学概率论统计学信号处理密码学海洋学通讯金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。

基本性质[编辑]

线性性质[编辑]

两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )g \left(x \right)的傅里叶变换\mathcal{F}[f]\mathcal{F}[g]都存在,\alpha\beta为任意常系数,则\mathcal{F}[\alpha f+\beta g]=\alpha\mathcal{F}[f]+\beta\mathcal{F}[g];傅里叶变换算符\mathcal{F}可经归一化成为幺正算符

平移性质[编辑]

若函数f \left( x\right )存在傅里叶变换,则对任意实数\omega_{0},函数f(x) e^{i \omega_{0} x}也存在傅里叶变换,且有\mathcal{F}[f(x)e^{i \omega_{0} x}]=F(\omega - \omega _0 )。式中花体\mathcal{F}是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e自然对数的底,i虚数单位\sqrt{-1}

微分关系[编辑]

若函数f \left( x\right )|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal{F}[f'(x)]= i \omega \mathcal{F}[f(x)],即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 i\omega。更一般地,若f(\pm\infty)=f'(\pm\infty)=\ldots=f^{(k-1)}(\pm\infty)=0,且\mathcal{F}[f^{(k)}(x)]存在,则\mathcal{F}[f^{(k)}(x)]=( i \omega)^{k} \mathcal{F}[f],即k导数的傅里叶变换等于原函数的傅里叶变换乘以因子( i \omega)^{k}

卷积特性[编辑]

若函数f \left( x\right )g \left( x\right )都在(-\infty,+\infty)绝对可积,则卷积函数f*g=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi(或者f*g=\int_{-\infty}^{+\infty} f(\xi)g(x-\xi)d\xi)的傅里叶变换存在,且\mathcal{F}[f*g]=\mathcal{F}[f]\cdot\mathcal{F}[g]。卷积性质的逆形式为\mathcal{F}^{-1}[F(\omega)*G(\omega)]=2\pi\mathcal{F}^{-1}[F(\omega)]\cdot\mathcal{F}^{-1}[G(\omega)],即两个函数卷积的傅里叶逆变换等于它们各自的傅里叶逆变换的乘积乘以2\pi

帕塞瓦尔定理[编辑]

若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{1}{2\pi}\int_{-\infty}^{+\infty} |F(\omega)|^{2}d\omega。其中F \left( \omega \right)f \left( x \right)的傅里叶变换。

更一般化而言,若函数f \left( x\right )g \left( x\right )皆為平方可積方程Square-integrable function),则\int_{-\infty}^{+\infty} f(x)g^{*}(x) dx = \frac{1}{2\pi}\int_{-\infty}^{+\infty} F(\omega)G^{*}(\omega)d\omega。其中F \left( \omega \right)G \left( \omega \right)分别是f \left( x \right)g \left( x \right)的傅里叶变换, *代表複共軛

傅里叶变换的不同变种[编辑]

傅立叶变换也可以写成在角频率形式: ω = 2πξ其单位是弧度每秒。

应用ξ=ω/(2π)到上述公式会成为下面的形式:

\hat{f}(\omega) = \int_{\mathbf R^n} f(x) e^{-i\omega\cdot x}\,dx.

根据这一形式,(傅里叶)逆变换变为:

f(x) = \frac{1}{(2\pi)^n} \int_{\mathbf R^n} \hat{f}(\omega)e^{i\omega \cdot x}\,d\omega.

若不按照本文中使用的,而像这样定义傅里叶变换,那它将不再是L2(Rn)上的一个酉变换 。另外这样的定义也使傅里叶变换与其逆变换显得不太对称。

另一个形式是把(2π)n均匀地分开给傅里叶变换和逆变换,即定义为:

 \hat{f}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbf{R}^n} f(x) e^{- i\omega\cdot x}\,dx
f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbf{R}^n} \hat{f}(\omega) e^{ i\omega \cdot x}\,d\omega.

根据这一形式,傅立叶变换是再次成为L2(Rn)上的一个幺正变换。它也恢复了傅立叶变换和逆变换之间的对称。

所有三种形式的变化可以通过对正向和反向变换的复指数核取共轭来实现。核函数的符号必须是相反的。除此之外,选择是习惯问题。

常用的傅立叶变换形式总结
普通频率ξ( 赫兹) 单一 \displaystyle \hat{f}_1(\xi)\ \stackrel{\mathrm{def}}{=}\ \int_{\mathbf{R}^n} f(x) e^{-2 \pi i x\cdot\xi}\, dx = \hat{f}_2(2 \pi \xi)=(2 \pi)^{n/2}\hat{f}_3(2 \pi \xi)
\displaystyle f(x) = \int_{\mathbf{R}^n} \hat{f}_1(\xi) e^{2 \pi i x\cdot \xi}\, d\xi \
角频率ω( 弧度/秒) 非单一 \displaystyle \hat{f}_2(\omega) \ \stackrel{\mathrm{def}}{=}\int_{\mathbf{R}^n} f(x) e^{-i\omega\cdot x} \, dx \ = \hat{f}_1 \left ( \frac{\omega}{2 \pi} \right ) = (2 \pi)^{n/2}\ \hat{f}_3(\omega)
\displaystyle f(x) = \frac{1}{(2 \pi)^n} \int_{\mathbf{R}^n} \hat{f}_2(\omega) e^{i \omega\cdot x} \, d \omega \
单一 \displaystyle \hat{f}_3(\omega) \ \stackrel{\mathrm{def}}{=}\ \frac{1}{(2 \pi)^{n/2}} \int_{\mathbf{R}^n} f(x) \ e^{-i \omega\cdot x}\, dx = \frac{1}{(2 \pi)^{n/2}} \hat{f}_1\left(\frac{\omega}{2 \pi} \right) = \frac{1}{(2 \pi)^{n/2}} \hat{f}_2(\omega)
\displaystyle f(x) = \frac{1}{(2 \pi)^{n/2}} \int_{\mathbf{R}^n} \hat{f}_3(\omega)e^{i \omega\cdot x}\, d \omega \

如上所讨论的,一个随机变量的特征函数是相同的傅里叶变换斯蒂尔切斯其分布的测量,但在这种情况下它是典型采取不同的惯例为常数。通常情况下特征函数的定义E(e^{it\cdot X})=\int e^{it\cdot x}d\mu_X(x)

在上面“非统一角频率”形式的情况下,存在的2π无因子出现在任一积分的,或在指数。不同于任何约定的上面出现的,本公约采取的指数符号相反。

傅里叶级数[编辑]

连续形式的傅里叶变换其实是傅里叶级数(Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

f(x) = \sum_{n=-\infty}^{\infty} F_n \,e^{inx} ,

其中F_n为复振幅。对于实值函数,函数的傅里叶级数可以写成:

f(x) = a_0 + \sum_{n=1}^\infty\left[a_n\cos(nx)+b_n\sin(nx)\right]

其中anbn频率分量的振幅。

傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。

离散时间傅里叶变换[编辑]

离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆轉換。

离散傅里叶变换[编辑]

为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性周期性条件。这种情况下,使用离散傅里叶变换,将函数xn表示为下面的求和形式:

x_n = \sum_{k=0}^{N-1} X_k e^{-i\frac{2\pi}{N} kn} \qquad n = 0,\dots,N-1

其中X_k是傅里叶振幅。直接使用这个公式计算的计算复杂度\mathcal{O}(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为\mathcal{O}(n \log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。

在阿贝尔群上的统一描述[编辑]

以上各种傅里叶变换可以被更统一的表述成任意局部紧致阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中,一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见龐特里亞金對偶性(Pontryagin duality)中的介绍。

时频分析变换[编辑]

小波变换chirplet轉換分数傅里叶变换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。

傅里叶变换家族[编辑]

主条目:傅立叶变换家族中的关系

下表列出了傅里叶变换家族的成员。容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性.

變換 時間 頻率
连续傅里叶变换 連續,非週期性 連續,非週期性
傅里叶级数 連續,週期性 離散,非週期性
离散时间傅里叶变换 離散,非週期性 連續,週期性
离散傅里叶变换 離散,週期性 離散,週期性

常用傅里叶变换表[编辑]

下表列出常用的傅里叶变换对。 GH分别代表函数g(t)h(t)的傅里叶变换. gh可以使可积函数或衰减的分布。

函数关系[编辑]

时域信号 角频率表示的
傅里叶变换
弧频率表示的
傅里叶变换
注释
 g(t)\!\equiv\!

 \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\!\!G(\omega) e^{i \omega t} d \omega \,
 G(\omega)\!\equiv\!

\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\!\!g(t) e^{-i \omega t} dt \,
 G(f)\!\equiv

\int_{-\infty}^{\infty}\!\!g(t) e^{-i 2\pi f t} dt \,
1 a\cdot g(t) + b\cdot h(t)\, a\cdot G(\omega) + b\cdot H(\omega)\, a\cdot G(f) + b\cdot H(f)\, 线性
2 g(t - a)\, e^{- i a \omega} G(\omega)\, e^{- i 2\pi a f} G(f)\, 时域平移
3 e^{ iat} g(t)\, G(\omega - a)\, G \left(f - \frac{a}{2\pi}\right)\, 频域平移,变换2的频域对应
4 g(a t)\, \frac{1}{|a|} G \left( \frac{\omega}{a} \right)\, \frac{1}{|a|} G \left( \frac{f}{a} \right)\, 如果|a|\,值较大,则g(a t)\,会收缩到原点附近,而\frac{1}{|a|}G \left( \frac{\omega}{a} \right)\,会扩散并变得扁平.当|a|趋向无穷时,成为狄拉克δ函数
5 G(t)\,  g(-\omega)\,  g(-f)\, 傅里叶变换的二元性性质。通过交换时域变量 t \,和频域变量 \omega \,得到.
6 \frac{d^n g(t)}{dt^n}\,  (i\omega)^n G(\omega)\,  (i 2\pi f)^n G(f)\, 傅里叶变换的微分性质
7 t^n g(t)\, i^n \frac{d^n G(\omega)}{d\omega^n}\, \left (\frac{i}{2\pi}\right)^n \frac{d^n G(f)}{df^n}\, 变换6的频域对应
8 (g * h)(t)\, \sqrt{2\pi} G(\omega) H(\omega)\, G(f) H(f)\, g * h\,表示g\,h\,的卷积—这就是卷积定理
9 g(t) h(t)\, (G * H)(\omega) \over \sqrt{2\pi}\, (G * H)(f)\, 变换8的频域对应。

平方可积函数[编辑]

时域信号 角频率表示的
傅里叶变换
弧频率表示的
傅里叶变换
注释
 g(t)\!\equiv\!

 \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\!\!G(\omega) e^{i \omega t} \mathrm{d} \omega \,
 G(\omega)\!\equiv\!

\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\!\!g(t) e^{-i \omega t} \mathrm{d}t \,
 G(f)\!\equiv

\int_{-\infty}^{\infty}\!\!g(t) e^{-i 2\pi f t} \mathrm{d}t \,
10 \mathrm{rect}(a t) \, \frac{1}{\sqrt{2 \pi a^2}}\cdot \mathrm{sinc}\left(\frac{\omega}{2\pi a}\right) \frac{1}{|a|}\cdot \mathrm{sinc}\left(\frac{f}{a}\right) 矩形脉冲和归一化的sinc函数
11  \mathrm{sinc}(a t)\, \frac{1}{\sqrt{2\pi a^2}}\cdot \mathrm{rect}\left(\frac{\omega}{2 \pi a}\right) \frac{1}{|a|}\cdot \mathrm{rect}\left(\frac{f}{a} \right)\, 变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。
12  \mathrm{sinc}^2 (a t) \,  \frac{1}{\sqrt{2\pi a^2}}\cdot \mathrm{tri} \left( \frac{\omega}{2\pi a} \right)  \frac{1}{|a|}\cdot \mathrm{tri} \left( \frac{f}{a} \right) tri三角形函数
13  \mathrm{tri} (a t) \, \frac{1}{\sqrt{2\pi a^2}} \cdot \mathrm{sinc}^2 \left( \frac{\omega}{2\pi a} \right) \frac{1}{|a|}\cdot \mathrm{sinc}^2 \left( \frac{f}{a} \right) \, 变换12的频域对应
14 e^{-\alpha t^2}\, \frac{1}{\sqrt{2 \alpha}}\cdot e^{-\frac{\omega^2}{4 \alpha}} \sqrt{\frac{\pi}{\alpha}}\cdot e^{-\frac{(\pi f)^2}{\alpha}} 高斯函数\exp(-\alpha t^2)的傅里叶变换是他本身.只有当\mathrm{Re}(\alpha)>0时,这是可积的。
15  e^{iat^2} = \left. e^{-\alpha t^2}\right|_{\alpha = -i a} \,  \frac{1}{\sqrt{2 a}} \cdot e^{-i \left(\frac{\omega^2}{4 a} -\frac{\pi}{4}\right)}  \sqrt{\frac{\pi}{a}} \cdot e^{-i \left(\frac{\pi^2 f^2}{a} -\frac{\pi}{4}\right)} 光学领域应用较多
16 \cos ( a t^2 ) \,  \frac{1}{\sqrt{2 a}} \cos \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right)  \sqrt{\frac{\pi}{a}} \cos \left( \frac{\pi^2 f^2}{a} - \frac{\pi}{4} \right)
17 \sin ( a t^2 ) \,  \frac{-1}{\sqrt{2 a}} \sin \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right)  - \sqrt{\frac{\pi}{a}} \sin \left( \frac{\pi^2 f^2}{a} - \frac{\pi}{4} \right)
18 \mathrm{e}^{-a|t|} \,  \sqrt{\frac{2}{\pi}} \cdot \frac{a}{a^2 + \omega^2}  \frac{2 a}{a^2 + 4 \pi^2 f^2} a>0
19  \frac{1}{\sqrt{|t|}} \,  \frac{1}{\sqrt{|\omega|}}  \frac{1}{\sqrt{|f|}} 变换本身就是一个公式
20  J_0 (t)\,  \sqrt{\frac{2}{\pi}} \cdot \frac{\mathrm{rect} \left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}}  \frac{2\cdot \mathrm{rect} (\pi f)}{\sqrt{1 - 4 \pi^2 f^2}} J0(t)0阶第一类贝塞尔函数
21  J_n (t) \,  \sqrt{\frac{2}{\pi}} \frac{ (-i)^n T_n (\omega) \mathrm{rect} \left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}}  \frac{2 (-i)^n T_n (2 \pi f) \mathrm{rect} (\pi f)}{\sqrt{1 - 4 \pi^2 f^2}} 上一个变换的推广形式; Tn (t)第一类切比雪夫多项式
22  \frac{J_n (t)}{t} \,  \sqrt{\frac{2}{\pi}} \frac{i}{n} (-i)^n \cdot U_{n-1} (\omega)\,

  \cdot \ \sqrt{1 - \omega^2} \mathrm{rect} \left( \frac{\omega}{2} \right)

 \frac{2 \mathrm{i}}{n} (-i)^n \cdot U_{n-1} (2 \pi f)\,

  \cdot \ \sqrt{1 - 4 \pi^2 f^2} \mathrm{rect} ( \pi f )

Un (t)第二类切比雪夫多项式

分布[编辑]

时域信号 角频率表示的
傅里叶变换
弧频率表示的
傅里叶变换
注释
 g(t)\!\equiv\!

 \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\!\!G(\omega) e^{i \omega t} d \omega \,
 G(\omega)\!\equiv\!

\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\!\!g(t) e^{-i \omega t} dt \,
 G(f)\!\equiv

\int_{-\infty}^{\infty}\!\!g(t) e^{-i 2\pi f t} dt \,
23 1\, \sqrt{2\pi}\cdot \delta(\omega)\, \delta(f)\, \delta(\omega)代表狄拉克δ函数分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
24 \delta(t)\, \frac{1}{\sqrt{2\pi}}\, 1\, 变换23的频域对应
25 e^{i a t}\, \sqrt{2 \pi}\cdot \delta(\omega - a)\, \delta(f - \frac{a}{2\pi})\, 由变换3和24得到.
26 \cos (a t)\, \sqrt{2 \pi} \frac{\delta(\omega\!-\!a)\!+\!\delta(\omega\!+\!a)}{2}\, \frac{\delta(f\!-\!\begin{matrix}\frac{a}{2\pi}\end{matrix})\!+\!\delta(f\!+\!\begin{matrix}\frac{a}{2\pi}\end{matrix})}{2}\, 由变换1和25得到,应用了欧拉公式\cos(a t) = (e^{i a t} + e^{-i a t})/2.
27 \sin( at)\, \sqrt{2 \pi}\frac{\delta(\omega\!-\!a)\!-\!\delta(\omega\!+\!a)}{2i}\, \frac{\delta(f\!-\!\begin{matrix}\frac{a}{2\pi}\end{matrix})\!-\!\delta(f\!+\!\begin{matrix}\frac{a}{2\pi}\end{matrix})}{2i}\, 由变换1和25得到
28 t^n\, i^n \sqrt{2\pi} \delta^{(n)} (\omega)\, \left(\frac{i}{2\pi}\right)^n \delta^{(n)} (f)\, 这里, n是一个自然数. \delta^{(n)}(\omega)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式
29 \frac{1}{t}\, -i\sqrt{\frac{\pi}{2}}\sgn(\omega)\, -i\pi\cdot \sgn(f)\, 此处\sgn(\omega)符号函数;注意此变换与变换7和24是一致的.
30 \frac{1}{t^n}\, -i \begin{matrix} \sqrt{\frac{\pi}{2}}\cdot \frac{(-i\omega)^{n-1}}{(n-1)!}\end{matrix} \sgn(\omega)\, -i\pi \begin{matrix} \frac{(-i 2\pi f)^{n-1}}{(n-1)!}\end{matrix} \sgn(f)\, 变换29的推广.
31 \sgn(t)\, \sqrt{\frac{2}{\pi}}\cdot \frac{1}{i\ \omega }\, \frac{1}{i\pi f}\, 变换29的频域对应.
32  u(t) \, \sqrt{\frac{\pi}{2}} \left( \frac{1}{i \pi \omega} + \delta(\omega)\right)\, \frac{1}{2}\left(\frac{1}{i \pi f} + \delta(f)\right)\, 此处u(t)单位阶跃函数;此变换根据变换1和31得到.
33  e^{- a t} u(t) \, \frac{1}{\sqrt{2 \pi} (a + i \omega)} \frac{1}{a + i 2 \pi f} u(t)单位阶跃函数,且a > 0.
34 \sum_{n=-\infty}^{\infty} \delta (t - n T) \, \begin{matrix} \frac{\sqrt{2\pi }}{T}\end{matrix} \sum_{k=-\infty}^{\infty} \delta \left( \omega -k \begin{matrix} \frac{2\pi }{T}\end{matrix} \right)\, \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left( f -\frac{k }{T}\right) \, 狄拉克梳状函数Dirac comb)——有助于解释或理解从连续到离散时间的转变.

二元函数[编辑]

时域信号 傅立叶变换
单一,普通频率
傅立叶变换
酉,角频率
傅立叶变换
非酉,角频率
400 \displaystyle f(x,y) \displaystyle \hat{f}(\xi_x, \xi_y)=
\displaystyle \iint f(x,y) e^{-2\pi i(\xi_x x+\xi_y y)}\,dx\,dy
\displaystyle \hat{f}(\omega_x,\omega_y)=
\displaystyle \frac{1}{2 \pi} \iint f(x,y) e^{-i (\omega_x x +\omega_y y)}\, dx\,dy
\displaystyle \hat{f}(\nu_x,\nu_y)=
\displaystyle \iint f(x,y) e^{-i(\nu_x x+\nu_y y)}\, dx\,dy
401 \displaystyle e^{-\pi\left(a^2x^2+b^2y^2\right)} \displaystyle \frac{1}{|ab|} e^{-\pi\left(\xi_x^2/a^2 + \xi_y^2/b^2\right)} \displaystyle \frac{1}{2\pi\cdot|ab|} e^{\frac{-\left(\omega_x^2/a^2 + \omega_y^2/b^2\right)}{4\pi}} \displaystyle \frac{1}{|ab|} e^{\frac{-\left(\nu_x^2/a^2 + \nu_y^2/b^2\right)}{4\pi}}
402 \displaystyle \mathrm{circ}(\sqrt{x^2+y^2}) \displaystyle \frac{J_1\left(2 \pi \sqrt{\xi_x^2+\xi_y^2}\right)}{\sqrt{\xi_x^2+\xi_y^2}} \displaystyle \frac{J_1\left(\sqrt{\omega_x^2+\omega_y^2}\right)}{\sqrt{\omega_x^2+\omega_y^2}} \displaystyle \frac{2\pi J_1\left(\sqrt{\nu_x^2+\nu_y^2}\right)}{\sqrt{\nu_x^2+\nu_y^2}}
注释

400: 变量ξxξyωxωyνxνy为实数。 对整个平面积分。

401: 这两个函数都是高斯分布,而且可能不具有单位体积。

402: 此圆有单位半径,如果把circ(t)认作阶梯函数u(1-t); Airy分布用J1(1阶第一类贝塞尔函数)表达。(Stein & Weiss 1971,Thm. IV.3.3)

三元函数[编辑]

时域信号 角频率表示的
傅里叶变换
弧频率表示的
傅里叶变换
注释
\mathrm{circ}(\sqrt{x^2+y^2+z^2})  4 \pi \frac{\sin[2 \pi f_r] - 2 \pi f_r \cos[2 \pi f_r]}{(2 \pi f_r)^3} 此球有单位半径;fr是频率矢量的量值{fx,fy,fz}.

参见[编辑]

參考資料[编辑]

外部連結[编辑]