本页使用了标题或全文手工转换

克罗内克积

维基百科,自由的百科全书
跳转至: 导航搜索

数学上,克罗内克积是两个任意大小的矩阵间的运算,表示为\otimes。克罗内克积是张量积的特殊形式,以德国数学家利奥波德·克罗内克命名。

定义[编辑]

如果A是一个 m × n 的矩阵,而B是一个 p × q 的矩阵,克罗内克积A \otimes B则是一个 mp × nq分块矩阵

 A \otimes B = \begin{bmatrix} a_{11} B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1} B & \cdots & a_{mn} B \end{bmatrix}.

更具体地可表示为

 A \otimes B = \begin{bmatrix}
   a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1q} & 
                   \cdots & \cdots & a_{1n} b_{11} & a_{1n} b_{12} & \cdots & a_{1n} b_{1q} \\
   a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2q} & 
                   \cdots & \cdots & a_{1n} b_{21} & a_{1n} b_{22} & \cdots & a_{1n} b_{2q} \\
   \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
   a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} & 
                   \cdots & \cdots & a_{1n} b_{p1} & a_{1n} b_{p2} & \cdots & a_{1n} b_{pq} \\
   \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\
   \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\
   a_{m1} b_{11} & a_{m1} b_{12} & \cdots & a_{m1} b_{1q} & 
                   \cdots & \cdots & a_{mn} b_{11} & a_{mn} b_{12} & \cdots & a_{mn} b_{1q} \\
   a_{m1} b_{21} & a_{m1} b_{22} & \cdots & a_{m1} b_{2q} & 
                   \cdots & \cdots & a_{mn} b_{21} & a_{mn} b_{22} & \cdots & a_{mn} b_{2q} \\
   \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\
   a_{m1} b_{p1} & a_{m1} b_{p2} & \cdots & a_{m1} b_{pq} & 
                   \cdots & \cdots & a_{mn} b_{p1} & a_{mn} b_{p2} & \cdots & a_{mn} b_{pq} 
\end{bmatrix}.

例子[编辑]


  \begin{bmatrix} 
    1 & 2 \\ 
    3 & 1 \\ 
  \end{bmatrix}
\otimes
  \begin{bmatrix} 
    0 & 3 \\ 
    2 & 1 \\ 
  \end{bmatrix}
=
  \begin{bmatrix} 
    1\cdot 0 & 1\cdot 3 & 2\cdot 0 & 2\cdot 3 \\ 
    1\cdot 2 & 1\cdot 1 & 2\cdot 2 & 2\cdot 1 \\ 
    3\cdot 0 & 3\cdot 3 & 1\cdot 0 & 1\cdot 3 \\ 
    3\cdot 2 & 3\cdot 1 & 1\cdot 2 & 1\cdot 1 \\ 
  \end{bmatrix}

=
  \begin{bmatrix} 
    0 & 3 & 0 & 6 \\ 
    2 & 1 & 4 & 2 \\
    0 & 9 & 0 & 3 \\
    6 & 3 & 2 & 1
  \end{bmatrix}
.

\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{bmatrix}
\otimes
\begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} & a_{12} b_{11} & a_{12} b_{12} & a_{12} b_{13} \\
a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} & a_{12} b_{21} & a_{12} b_{22} & a_{12} b_{23} \\
a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} & a_{22} b_{11} & a_{22} b_{12} & a_{22} b_{13} \\
a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} & a_{22} b_{21} & a_{22} b_{22} & a_{22} b_{23} \\
a_{31} b_{11} & a_{31} b_{12} & a_{31} b_{13} & a_{32} b_{11} & a_{32} b_{12} & a_{32} b_{13} \\
a_{31} b_{21} & a_{31} b_{22} & a_{31} b_{23} & a_{32} b_{21} & a_{32} b_{22} & a_{32} b_{23}
\end{bmatrix}
.

特性[编辑]

双线性和结合律[编辑]

克罗内克积张量积的特殊形式,因此满足双线性结合律

 A \otimes (B+C) = A \otimes B + A \otimes C \qquad \mbox{(if } B \mbox{ and } C \mbox{ have the same size)},
 (A+B) \otimes C = A \otimes C + B \otimes C \qquad \mbox{(if } A \mbox{ and } B \mbox{ have the same size)},
 (kA) \otimes B = A \otimes (kB) = k(A \otimes B),
 (A \otimes B) \otimes C = A \otimes (B \otimes C),

其中,A, BC 是矩阵,而 k 是常量。

克罗内克积不符合交换律:通常,A \otimes B 不同于 B \otimes A

A \otimes BB \otimes A是排列等价的,也就是说,存在排列矩阵PQ,使得

 A \otimes B = P \, (B \otimes A) \, Q.

如果AB是方块矩阵,则A \otimes BB \otimes A甚至是排列相似的,也就是说,我们可以取P = QT

混合乘积性质[编辑]

如果ABCD是四个矩阵,且矩阵乘积ACBD存在,那么:

 (\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD}.

这个性质称为“混合乘积性质”,因为它混合了通常的矩阵乘积和克罗内克积。于是可以推出,A \,\otimes\, B可逆当且仅当AB是可逆的,其逆矩阵为:

 (\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}.

克罗内克和[编辑]

如果An × n矩阵,Bm × m矩阵,\mathbf{I}_k表示k × k单位矩阵,那么我们可以定义克罗内克和\oplus为:

 \mathbf{A} \oplus \mathbf{B} = \mathbf{A} \otimes \mathbf{I}_m + \mathbf{I}_n \otimes \mathbf{B}.

[编辑]

假设AB分别是大小为nq的方块矩阵。设λ1,……,λnA特征值,μ1,……,μqB的特征值。那么A \,\otimes\, B的特征值为:

 \lambda_i \mu_j, \qquad i=1,\ldots,n ,\, j=1,\ldots,q.

于是可以推出,两个矩阵的克罗内克积的行列式为:

 \operatorname{tr}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{tr} \mathbf{A} \, \operatorname{tr} \mathbf{B} \quad\mbox{and}\quad \det(\mathbf{A} \otimes \mathbf{B}) = (\det \mathbf{A})^q (\det \mathbf{B})^n.

奇异值[编辑]

如果AB是长方矩阵,那么我们可以考虑它们的奇异值。假设ArA个非零的奇异值,它们是:

 \sigma_{\mathbf{A},i}, \qquad i = 1, \ldots, r_\mathbf{A}.

类似地,设B的非零奇异值为:

 \sigma_{\mathbf{B},i}, \qquad i = 1, \ldots, r_\mathbf{B}.

那么克罗内克积A \,\otimes\, BrArB个非零奇异值,它们是:

 \sigma_{\mathbf{A},i} \sigma_{\mathbf{B},j}, \qquad i=1,\ldots,r_\mathbf{A} ,\, j=1,\ldots,r_\mathbf{B}.

由于一个矩阵的秩等于非零奇异值的数目,因此我们有:

 \operatorname{rank}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{rank} \mathbf{A} \, \operatorname{rank} \mathbf{B}.

与抽象张量积的关系[编辑]

矩阵的克罗内克积对应于线性映射的抽象张量积。特别地,如果向量空间VWXY分别具有基{v1, ... , vm}、 {w1, ... , wn}、{x1, ... , xd}和{y1, ... , ye},且矩阵AB分别在恰当的基中表示线性变换S : VXT : WY,那么矩阵AB表示两个映射的张量积ST : VWXY,关于VW的基{v1 ⊗ w1, v1 ⊗ w2, ... , v2 ⊗ w1, ... , vm ⊗ wn}和XY的类似基。[1]

与图的乘积的关系[编辑]

两个邻接矩阵的克罗内克积是它们的张量积图的邻接矩阵。两个图的邻接矩阵的克罗内克和,则是它们的笛卡儿积图的邻接矩阵。参见[2]第96个练习的答案。

转置[编辑]

克罗内克积转置运算符合分配律:

(A\otimes B)^T = A^T \otimes B^T.

矩阵方程[编辑]

克罗内克积可以用来为一些矩阵方程得出方便的表示法。例如,考虑方程AXB = C,其中ABC是给定的矩阵,X是未知的矩阵。我们可以把这个方程重写为

 (B^\top \otimes A) \, \operatorname{vec}(X) = \operatorname{vec}(AXB) = \operatorname{vec}(C).

这样,从克罗内克积的性质可以推出,方程AXB = C具有唯一的解,当且仅当AB是非奇异矩阵。(Horn & Johnson 1991,Lemma 4.3.1).

在这里,vec(X)表示矩阵X向量化,它是把X的所有列堆起来所形成的列向量

如果把X的行堆起来,形成列向量x,则 AXB 也可以写为 (A \otimes B^\top)x Jain 1989,2.8 block Matrices and Kronecker Products)。

历史[编辑]

尽管没有明显证据证明利奥波德·克罗内克是第一个定义并使用这一运算的人,克罗内克积还是以其名字命名。确实,在历史上,克罗内克积曾以Johann Georg Zehfuss名字命名为Zehfuss矩阵。

參考文獻[编辑]

  1. ^ Pages 401–402 of Dummit, David S.; Foote, Richard M., Abstract Algebra 2, New York: John Wiley and Sons, Inc., 1999, ISBN 0-471-36857-1 
  2. ^ D. E. Knuth: "Pre-Fascicle 0a: Introduction to Combinatorial Algorithms", zeroth printing (revision 2), to appear as part of D.E. Knuth: The Art of Computer Programming Vol. 4A
  • Horn, Roger A.; Johnson, Charles R., Topics in Matrix Analysis, Cambridge University Press, 1991, ISBN 0-521-46713-6 .
  • Jain, Anil K., Fundamentals of Digital Image Processing, Prentice Hall, 1989, ISBN 0-13-336165-9 .

外部链接[编辑]