本页使用了标题或全文手工转换

向量自回归模型

维基百科,自由的百科全书
跳转至: 导航搜索

向量自迴歸模型英语Vector Autoregression model,简称VAR模型)是一种常用的计量经济模型,由计量经济学家和宏观经济学克里斯托弗·西姆斯英语Christopher Sims)提出。它擴充了只能使用一個變量的自迴歸模型(簡稱:AR模型),使容納大於1個變量,因此經常用在多變量時間序列模型的分析上。

定义[编辑]

VAR模型描述在同一样本期间内的n变量(内生变量)可以作为它们过去值的线性函数。

一个VAR(p)模型可以写成为:

y_{t}=c + A_{1}y_{t-1} + A_{2}y_{t-2} + \cdots + A_{p}y_{t-p} + e_{t},

其中:cn × 1常数向量Ain × n矩阵。etn × 1误差向量,满足:

  1. \mathrm{E}(e_{t}) = 0\, —误差项的均值为0
  2. \mathrm{E}(e_{t}e_{t}') = \Omega\, —误差项的协方差矩阵为Ω(一个n × 'n正定矩阵)
  3. \mathrm{E}(e_{t}e_{t-k}') = 0\, (对于所有不为0的k都满足)—误差项不存在自相关

例子[编辑]

一个有两个变量的VAR(1)模型可以表示为:

\begin{bmatrix}y_{1,t} \\ y_{2,t}\end{bmatrix} = \begin{bmatrix}c_{1} \\ c_{2}\end{bmatrix} + \begin{bmatrix}A_{1,1}&A_{1,2} \\ A_{2,1}&A_{2,2}\end{bmatrix}\begin{bmatrix}y_{1,t-1} \\ y_{2,t-1}\end{bmatrix} + \begin{bmatrix}e_{1,t} \\ e_{2,t}\end{bmatrix},

或者也可以写为以下的方程组:

y_{1,t} = c_{1} + A_{1,1}y_{1,t-1} + A_{1,2}y_{2,t-1} + e_{1,t}\,
y_{2,t} = c_{2} + A_{2,1}y_{1,t-1} + A_{2,2}y_{2,t-1} + e_{2,t}.\,

转换VAR(p)为VAR(1)[编辑]

VAR(p)模型常常可以被改写为VAR(1)模型。 比如VAR(2)模型:

y_{t}=c + A_{1}y_{t-1} + A_{2}y_{t-2} + e_{t}

可以转换成一个VAR(1)模型:

\begin{bmatrix}y_{t} \\ y_{t-1}\end{bmatrix} = \begin{bmatrix}c \\ 0\end{bmatrix} + \begin{bmatrix}A_{1}&A_{2} \\ I&0\end{bmatrix}\begin{bmatrix}y_{t-1} \\ y_{t-2}\end{bmatrix} + \begin{bmatrix}e_{t} \\ 0\end{bmatrix},

其中I单位矩阵

结构与简化形式[编辑]

结构向量自迴归[编辑]

一个结构向量自迴归(Structural VAR)模型可以写成为:

B_{0}y_{t}=c_{0} + B_{1}y_{t-1} + B_{2}y_{t-2} + \cdots + B_{p}y_{t-p} + \epsilon_{t},

其中:c0n × 1常数向量Bin × n矩阵,εtn × 1误差向量。

一个有两个变量的结构VAR(1)可以表示为:

\begin{bmatrix}1&B_{0;1,2} \\ B_{0;2,1}&1\end{bmatrix}\begin{bmatrix}y_{1,t} \\ y_{2,t}\end{bmatrix} = \begin{bmatrix}c_{0;1} \\ c_{0;2}\end{bmatrix} + \begin{bmatrix}B_{1;1,1}&B_{1;1,2} \\ B_{1;2,1}&B_{1;2,2}\end{bmatrix}\begin{bmatrix}y_{1,t-1} \\ y_{2,t-1}\end{bmatrix} + \begin{bmatrix}\epsilon_{1,t} \\ \epsilon_{2,t}\end{bmatrix},

其中:

\Sigma = \mathrm{E}(\epsilon_{t}\epsilon_{t}') = \begin{bmatrix}\sigma_{1}&0 \\ 0&\sigma_{2}\end{bmatrix};

简化向量自迴歸[编辑]

把结构向量自迴歸与B0逆矩阵相乘:

y_{t} = B_{0}^{-1}c_{0} + B_{0}^{-1}B_{1}y_{t-1} + B_{0}^{-1}B_{2}y_{t-2} + \cdots + B_{0}^{-1}B_{p}y_{t-p} + B_{0}^{-1}\epsilon_{t},

让:

B_{0}^{-1}c_{0} = c, B_{0}^{-1}B_{i} = A_{i} 对于 i = 1, \cdots, p\,B_{0}^{-1}\epsilon_{t} = e_{t}

我们得到p-阶简化向量自迴歸(Reduced VAR):

y_{t}=c + A_{1}y_{t-1} + A_{2}y_{t-2} + \cdots + A_{p}y_{t-p} + e_{t}

相關條目[编辑]