地熱能

维基百科,自由的百科全书
跳转至: 导航搜索
冰島奈斯亞威里爾地熱發電站
可再生能源
Wind turbine

太陽能
風能
水力發電
地熱能
海洋能
潮汐能
生物燃料
生物能

不同的地熱能技術及用途
冰島北部克拉夫拉的地熱發電站

地熱能英语Geothermal Energy)是由地殼抽取的天然熱能,這種能量來自地球內部的熔岩,並以熱力形式存在,是引致火山爆發及地震的能量。地球內部的溫度高達攝氏7000度,而在 80至100公里的深度處,溫度會降至攝氏650度至1200度。透過地下水的流動和熔岩湧至離地面1 至5公里的地殼,熱力得以被轉送至較接近地面的地方。高溫的熔岩將附近的地下水加熱,這些加熱了的水最終會滲出地面。運用地熱能最簡單和最合乎成本效益的方法,就是直接取用這些熱源,並抽取其能量

人類很早以前就開始利用地熱能,例如在旧石器时代就有利用溫泉沐浴、醫療,在古罗马时代利用地下熱水取暖等、近代有建造農作物溫室、水產養殖及烘乾穀物等。但真正認識地熱資源並進行較大規模開發利用卻是始於20世紀中葉,但是,现代则更多利用地熱来發電

地熱能的利用可分為地熱發電和直接利用兩大類。地熱能是來自地球深處的可再生能源。地球地殼的地熱能源起源於地球行星的形成(20%)和礦物質放射性衰變(80%)。[1][2]地熱能儲量比目前人們所利用的總量多很多倍,而且因为历史原因多集中分佈在構造板塊邊緣一帶、該區域也是火山地震多發區。如果熱量提取的速度不超過補充的速度,那麼地熱能便是可再生的。地熱能在世界很多地區應用相當廣泛。據估計,每年從地球內部傳到地面的熱能相當於100PW·h。不過,地熱能的分佈相對來說比較分散,開發難度大。

地熱發電[编辑]

技術應用層面[编辑]

支援地熱發電開發的技術是多面向的,其主要涵蓋能源生產技術、能源工程技術與其他相關技術三大領域。

能源生產技術[编辑]

能源生產技術包括探勘技術、鑽井技術與測井及儲積工程技術。

  • 探勘技術:以經濟、有效的方法,估計地熱田的溫度深度體積構造及其他特性,據以研判井位之選定,並推估其開發價值。
  • 鑽井技術:鑽井成本占開發地熱的最大比例,亦可驗證初步探勘之結果,經確認地熱資源的賦存及生產特性後,由適當的完井技術在安全控制狀況下開採。
  • 測井及儲積工程技術:完井後可作單井或多口井同時噴流之測井,利用取得的井流特性及地下資料,可以推斷儲積層的位置、深度、厚度、構造、儲積範圍、流體產狀和產能,據以規劃地熱井的生產控制及地熱田的開發與維護,作有效的利用。

地熱發電已成功引用的探勘[编辑]

能源工程技術[编辑]

能源工程技術包括發電技術、小型地熱發電機研發技術與直接利用技術等。現今地熱發電的發電技術有四種最主要的應用系統,分別是:全流發電系統、地熱蒸汽發電系統、熾熱岩發電系統與雙迴圈發電系統。

  • 地熱蒸汽發電系統:可細分為「乾蒸汽式」發電,及「閃化蒸汽式」發電。前者的天然乾蒸汽是最簡便而有效的工作流體,只要由管線直接導入蒸汽渦輪機就可產生電力;後者如2.2所述,高溫地熱水經單段或多段閃化成為蒸汽,再由汽水分離裝置去除熱水,以蒸汽推動渦輪機發電。該系統之運用技術已趨成熟且安全可靠,是目前地熱發電最主要的形式。
  • 熾熱岩發電系統:須先鑿通兩口深達數千公尺的深斜井,再將冷水注入其中一井,由熾熱岩層所提供的地熱加熱,使其產生水蒸氣從另一井匯集後,推動渦輪機發電;不過由於經濟因素使然,該發電系統較難被大規模推廣,但最近新興的「熱幹岩層法」卻延伸了此一概念。
  • 雙迴圈發電系統:又稱「雙循環式」發電或介質發電系統。係以低沸點的物質(如:丁烷等)作為介質(即工作流體),與地熱井產生的熱流體藉由熱交換器達到加熱,使其氣化以推動渦輪機產生電力,且工作流體可循環使用。值得注意的是,其中可作為介質的氟氯昂(Freon)因「蒙特婁公約」之故,已全面禁用。
  • 全流發電系統:又稱「總流式」發電。地熱井產生的熱流體,包括蒸汽及熱水的兩相混合體,同時導入特殊設計的渦輪機,由動能及壓力能帶動傳動軸連接發電機以產生電力。

其他相關技術[编辑]

  1. 地热能的直接热利用技术
  2. 地热水回灌技术
  3. 地热温泉水处理技术

分布狀況[编辑]

美國地熱資源委員會(GRC)1990年的調查,世界上18個國家有地熱發電,總裝機容量5827.55兆瓦,裝機容量在100兆瓦以上的國家有美國菲律賓墨西哥義大利新西蘭日本印尼中華人民共和國的地熱資源也很豐富,虽然地热发电装机容量较小,但在地热的直接热利用能量和温泉水利用方面已居世界首位。中国的地热主要分佈在雲南西藏河北、天津、福建、广东、北京、陕西等省區。除以上利用外,從熱水中還可提取鹽類、有益化學組分和硫磺等。

開發考量[编辑]

地熱發電與火力發電相比,最顯著的差異便是不需裝設鍋爐且節省燃料費。但若欠缺良好的熱交換及其相關技術,不僅無法將珍貴的地熱資源善加利用,反而易肇生設備毀壞或工安問題。

優缺點[编辑]

優點[编辑]

  • 地熱能穩定,可以做為基載電力。

缺點[编辑]

  • 技術要求高,例如抗腐蝕的管線會提高投資成本。
  • 可能需要挖深井才能有足夠的溫度。

人造地熱能[编辑]

人造地熱能(EGS)是為了解決全球暖化對於乾淨能源的大量需求而逐漸成為21世紀顯學的一種新方法,最初概念70年代已經提出但是一直沒有受到重視。構想為地熱分佈地區極為受限,於是有人提出採用深度鑽孔技術於任何地方鑽至靠近地底熔岩附近300度以上的區域,至少鑽2井,一井注入冷水、一井收回地熱,加熱後的蒸氣發電,如果成本允許鑽更多回收井則可以減少散失蒸氣;增加發電效能。

雖然原理簡單但是由於所需井深極深達5公里以上,又要通過許多堅硬花崗岩地殼,傳統衝鑽法需磨損數百具高價鑽頭成本太大,而地底狀況難以掌握有可能鑽出水氣不能流通的廢井,加上地熱在大眾媒體關注不如太陽能和風力高,諸多因素使人不願投資而停於實驗階段。

但是新興科技例如水熱鑽機、電漿鑽機的概念已經提出,鑽井成本有望大幅下降,屆時地熱能不受位置和氣候影響能提供24小時穩定基載電量的特性,建設時間、成本和大眾疑慮又遠低於核能;很有望成為最具競爭力綠色能源和全球暖化的解救方案。

更多資料:超臨界流體

超臨界二氧化碳流體可以替代水作为工作流體將熱量轉送至地熱發電廠,然后抽取其能量或推動渦輪機發電。

地熱空調[编辑]

地下有恆溫的特性,除地表隨季節略有變化、幾百米深度以下開始有溫度梯度,中間基本是一個恒溫區,一般平均十五度左右,隨地區及水文地質條件不同略有差別,這種蘊藏在淺層岩土體、地下水或地表水中的熱能形式的地熱能叫做淺層地熱能或淺層地溫能。其溫度範圍與人類所需要的暖通空調溫度最為接近,夏季比冷卻塔循環水溫度低,冬季比室外溫度高,故可以採用此特性在適合的地區,主要是利用熱泵技術設計低耗能的冷暖空調系統,使房間保持在讓人舒適的溫度範圍內。
採用淺層地熱能的冷暖空調形式主要有兩種:一種叫地源熱泵,另外一種叫做水源熱泵。
水源熱泵有兩種:多井系統和單井系統。多井系統就是一(多)個井抽、其他一(多)個井回灌,且需要定期回揚,主要是利用地下水中的能量;單井系統是通過控制井內結構,使抽灌都在同一個井內實現,主要是利用該井周邊範圍內岩土體及地下水中的能量;就構造上說,要比多井系統複雜,若某個系統中有多個單井,使用中可以當作多井系統使用。水源熱泵系統,因為是一個開放的系統,人為的改變了地下水的原始狀態,若缺乏科學的設計,會產生嚴重的後果。
地源熱泵則沒有這種擔憂。地源熱泵形式是利用埋在地下的密閉管道內的迴圈水(或其他液體),將地下土壤或岩層中的熱量與管道內的水進行熱交換,為熱泵機組提供熱源或熱匯。有些條件下也可以沒有熱泵而直接將在地下迴圈的水作為熱匯,給建築室內提供空調。如果在地下迴圈的水的溫度達到可以直接為建築室內提供熱源的程度,這種地下的溫度情況應該叫做地熱了。

參看[编辑]

參考資料[编辑]

  1. ^ How Geothermal energy works
  2. ^ Turcotte, D. L.; Schubert, G., 4, Geodynamics. 2, Cambridge, England, UK: Cambridge University Press. 2002:  136–137, ISBN 978-0-521-66624-4