多面体

维基百科,自由的百科全书
跳转至: 导航搜索
部分的多面體
Dodecahedron.svg
正十二面體
(正多面體)
SmallStellatedDodecahedron.jpg
小星形十二面體
(星形正多面體)
Icosidodecahedron.jpg
截半二十面體
(半正多面體)
Great cubicuboctahedron.png
大立方截半立方體
(均勻多面體)
Rhombicuboctahedron.jpg
小斜方截半立方体
(半正多面體)
Small ditrigonal icosidodecahedron.png
小雙三斜三十二面體
(均勻多面體)
Rhombictriacontahedron.svg
菱形三十面體
(卡塔蘭立體)
Elongated pentagonal cupola.png
正五角帳塔柱
(詹森多面體)
Octagonal prism.png
八角棱柱
(稜柱)
Square antiprism.png
正四角反稜柱
(反稜柱)

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edronέδρα,基底、座、面)構成,即意為「多面體」。

然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒龐索柯西……各個時期……數學家們都未能準確定義何謂『多面體』。[1]”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。

经典多面体[编辑]

在经典意义上,一个多面体是一个三维形体,它由有限个多边形组成,每个面都是某个平面的一部分,面相交于,每条边是直线段,而边交于点,称为顶点立方体棱锥棱柱都是多面体的例子。多面体包住三维空间的一块有界体积;有时内部的体也视为多面体的一部分。一个多面体是多边形的三维对应。多边形,多面体和更高维的对应物的一般术语是多胞体

參見[编辑]

參考資料[编辑]

  1. ^ Grünbaum, B.. Polyhedra with Hollow Faces. (编) Tibor Bisztriczky; Peter McMullen; Rolf Schneider et al. Proceedings of the NATO Advanced Study Institute on Polytopes: Abstract, Convex and Computational. Springer. 1994: 43–70. ISBN 978-94-010-4398-4. 

外部連結[编辑]