太阳系最高山峰列表

维基百科,自由的百科全书
跳转至: 导航搜索

以下为太阳系各星球上已知的最高山峰列表,羅列星球上的各類型之最高峰。高达21.9千米的盾状火山奥林帕斯山是太阳系所有行星中的最高山峰。在1971年它被发现之后的40年中,奥林帕斯山一直是太阳系中已知的最高峰。然而在2011年发现小行星灶神星雷亚希尔维亚盆地中央峰也具有相仿的高度。[lower-alpha 1]

太阳系最高峰,火星上的奥林帕斯山与地球上的珠穆朗玛峰冒纳凯阿火山的对比。

列表[编辑]

以下高度为从底部到顶部的距离,因为在其他星球没有与地球对等的海平面可供测量。

星球 最高峰 高度 发源 注释
水星 卡洛里山脉 超过3 km[1][2] 撞击坑[3] 卡洛里撞击形成
金星 馬克士威山脈 约6.4 km(4.0 mi) [4] 构造山[5] 具有被称为「金星之雪」的明亮雷达影像区域,可能是因为黄铁矿等矿物存在造成的[6]
马特山 约4.9 km(3.0 mi)[7] 火山[8] 金星上最高的火山
地球 冒纳凯阿火山冒纳罗亚火山 10.2 km(6.3 mi)[9] 火山 露出海平面仅有4.2 km(2.6 mi)
麦金利山 5.3至5.9 km(3.3至3.7 mi)[10] 构造山 地球上底部到顶部最高的山[11][lower-alpha 2]
珠穆朗玛峰 3.6至4.6 km(2.2至2.9 mi)[12] 构造山 北坡高4.6 km,南坡高3.6 km[lower-alpha 3]
月球 惠更斯山 5.5 km(3.4 mi)[13][14] 撞击坑 雨海撞击形成
哈德利山英语Mons Hadley 4.5 km(2.8 mi)[13][14] 撞击坑 由雨海撞击形成
吕姆克山英语Mons Rümker 1.1 km(0.68 mi)[15] 火山 月球上最大的火山结构[15]
火星 奥林帕斯山 21.9 km(14 mi)[16][17] 火山 Rises 26 km above northern plains,[18] 1000 km away.
艾斯克雷尔斯山 14.9 km(9.3 mi)[16] 火山 塔尔西斯山群英语Tharsis Montes三座山之中最高者
埃律西昂山 12.6 km(7.8 mi)[16] 火山 埃律西昂平原最高的火山
阿尔西亚山 11.7 km(7.3 mi)[16] 火山 Summit caldera is 108至138 km(67至86 mi) across[16]
帕弗尼斯山 8.4 km(5.2 mi)[16] 火山 Summit caldera is 4.8 km(3.0 mi) deep[16]
安瑟里斯山英语Anseris Mons 6.2 km(3.9 mi)[19] 撞击坑 火星上最高的非火山,由希腊撞击形成
夏普山 4.5至5.5 km(2.8至3.4 mi)[20][lower-alpha 4] 侵蚀作用[20] Formed from deposits in Gale crater; to be ascended by the MSL rover[22]
灶神星 雷亚希尔维亚中央峰 22 km(14 mi)[23][24] 撞击坑 参见太阳系最大撞击坑列表
木卫一 Boösaule Montes "South"[25] 17.5至18.2 km(10.9至11.3 mi)[26] 构造山 Has a 15 km(9 mi) high scarp on its SE margin[27]
爱奥尼亚山东脊 约12.7 km(7.9 mi)[27][28] 构造山 Has the form of a curved double ridge
优卑亚山 10.3至13.4 km(6.4至8.3 mi)[29] 构造山 A NW flank landslide left a 25,000 km3 debris apron[30][lower-alpha 5]
未命名(245° W, 30° S) 约2.5 km(1.6 mi)[31][32] 火山 木卫一的最高火山之一,拥有非典型的圆锥形。[32][lower-alpha 6]
土卫一 赫歇尔撞击坑中央峰 约7 km(4 mi)[34] 撞击坑 参见太阳系最大撞击坑列表
土衛六 米斯林山脉 2.0 km(1.2 mi)[35] 构造山 (?) May have formed due to global contraction[35]
末日山 1.45 km(0.90 mi)[36] 冰火山 (?) 索特拉光斑相邻
土卫八 赤道脊 约20 km(12 mi)[37] 不明[lower-alpha 7] 各別的山峰高度仍待測量
天卫四 未命名("limb mountain") 约11 km(7 mi)[34] 撞击坑 (?) 旅行者2号飞掠,简单地测定为6公里[41]

相册[编辑]

以下图片以高度降序排列:

参见[编辑]

注释[编辑]

  1. ^ Olympus Mons, however, is a much broader peak; its diameter exceeds that of Vesta itself.
  2. ^ On p. 20 of Helman (2005): "the base to peak rise of Mount McKinley is the largest of any mountain that lies entirely above sea level, some 18000 feet"
  3. ^ Peak is 8.8 km(5.5 mi) above sea level, and over 13 km(8.1 mi) above the oceanic abyssal plain.
  4. ^ About 5.25 km high from the perspective of the landing site of Curiosity.[21]
  5. ^ Among the Solar System's largest[30]
  6. ^ Some of Io's paterae are surrounded by radial patterns of lava flows, indicating they are on a topographic high point, making them shield volcanoes. Most of these volcanoes exhibit relief of less than 1 km. A few have more relief; Ruwa Patera rises 2.5 to 3 km over its 300 km width. However, its slopes are only on the order of a degree.[33] A handful of Io's smaller shield volcanoes have steeper, conical profiles; the example listed is 60 km across and has slopes averaging 4° and reaching 6-7° approaching the small summit depression.[33]
  7. ^ Hypotheses of origin include crustal readjustment associated with a decrease in oblateness due to tidal locking,[38][39] and deposition of deorbiting material from a former ring around the moon.[40]
  8. ^ A linearized wide-angle hazcam image that makes the mountain look steeper than it actually is.

参考资料[编辑]

  1. ^ Surface. MESSENGER web site. Johns Hopkins University/Applied Physics Lab. [2012-04-04]. 
  2. ^ Oberst, J.; Preusker, F.; Phillips, R. J.; Watters, T. R.; Head, J. W.; Zuber, M. T.; Solomon, S. C. The morphology of Mercury’s Caloris basin as seen in MESSENGER stereo topographic models. Icarus. 2010, 209 (1): 230–238. doi:10.1016/j.icarus.2010.03.009. ISSN 0019-1035. 
  3. ^ Fassett, C. I.; Head, J. W.; Blewett, D. T.; Chapman, C. R.; Dickson, J. L.; Murchie, S. L.; Solomon, S. C.; Watters, T. R. Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Earth and Planetary Science Letters. 2009, 285 (3-4): 297–308. doi:10.1016/j.epsl.2009.05.022. ISSN 0012-821X. 
  4. ^ Jones, Tom; Stofan, Ellen. Planetology : Unlocking the secrets of the solar system. Washington, D.C.: National Geographic Society. 2008: 74. ISBN 978-1-4262-0121-9. 
  5. ^ Keep, M.; Hansen, V. L. Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation. Journal of Geophysical Research. 1994, 99 (E12): 26015. doi:10.1029/94JE02636. ISSN 0148-0227. 
  6. ^ Otten, Carolyn Jones. 'Heavy metal' snow on Venus is lead sulfide. Newsroom (Washington University in Saint Louis). 2004-02-10 [2012-12-10]. 
  7. ^ PIA00106: Venus - 3D Perspective View of Maat Mons. Planetary Photojournal. Jet Propulsion Lab. 1996-08-01 [2012-06-30]. 
  8. ^ Robinson, C. A.; Thornhill, G. D.; Parfitt, E. A. Large-scale volcanic activity at Maat Mons: Can this explain fluctuations in atmospheric chemistry observed by Pioneer Venus?. Journal of Geophysical Research. 1995-01, 100 (E6): 11755–11764 [2013-02-11]. Bibcode:1995JGR...10011755R. doi:10.1029/95JE00147. 
  9. ^ Mountains: Highest Points on Earth. National Geographic Society. [September 19, 2010]. 
  10. ^ NOVA Online: Surviving Denali, The Mission. NOVA. Public Broadcasting Corporation. 2000 [June 7, 2007]. 
  11. ^ Adam Helman. The Finest Peaks: Prominence and Other Mountain Measures. Trafford Publishing. 2005 [2012-12-09]. ISBN 978-1-4120-5995-4. 
  12. ^ Mount Everest (1:50,000 scale map), prepared under the direction of Bradford Washburn for the Boston Museum of Science, the Swiss Foundation for Alpine Research, and the National Geographic Society, 1991, ISBN 3-85515-105-9
  13. ^ 13.0 13.1 Fred W. Price. The Moon observer's handbook. London: Cambridge University Press. 1988. ISBN 0-521-33500-0. 
  14. ^ 14.0 14.1 Moore, Patrick. On the Moon. London: Cassell & Co. 2001. 
  15. ^ 15.0 15.1 Wöhler, C.; Lena, R.; Pau, K. C.. The Lunar Dome Complex Mons Rümker: Morphometry, Rheology, and Mode of Emplacement. Proceedings Lunar and Planetary Science XXXVIII. League City, Texas: Dordrecht, D. Reidel Publishing Co. March 12–16, 2007 [2007-08-28]. 
  16. ^ 16.0 16.1 16.2 16.3 16.4 16.5 16.6 Plescia, J. B. Morphometric properties of Martian volcanoes. Journal of Geophysical Research. 2004, 109 (E3). doi:10.1029/2002JE002031. ISSN 0148-0227. 
  17. ^ Carr, M.H., 2006, The Surface of Mars, Cambridge, 307 p.
  18. ^ Comins, Neil F. Discovering the Essential Universe. Macmillan. 4 January 2012 [23 December 2012]. ISBN 978-1-4292-5519-6. 
  19. ^ JMARS MOLA elevation dataset. Christensen, P.; Gorelick, N.; Anwar, S.; Dickenshied, S.; Edwards, C.; Engle, E. (2007) "New Insights About Mars From the Creation and Analysis of Mars Global Datasets;" American Geophysical Union, Fall Meeting, abstract #P11E-01.
  20. ^ 20.0 20.1 Gale Crater's History Book. Mars Odyssey THEMIS web site. Arizona State University. [2012-12-07]. 
  21. ^ Anderson, R. B.; Bell III, J. F. Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. International Journal of Mars Science and Exploration. 2010, 5: 76–128. Bibcode:2010IJMSE...5...76A. doi:10.1555/mars.2010.0004. 
  22. ^ Agle, D. C. 'Mount Sharp' On Mars Links Geology's Past and Future. NASA. 28 March 2012 [31 March 2012]. 
  23. ^ Vega, P. New View of Vesta Mountain From NASA's Dawn Mission. Jet Propulsion Lab's Dawn mission web site. NASA. 11 October 2011 [29 March 2012]. 
  24. ^ Schenk, P.; Marchi, S.; O'Brien, D.P.; Buczkowski, D.; Jaumann, R.; Yingst, A.; McCord, T.; Gaskell, R.; Roatsch, T.; Keller, H. E.; Raymond, C.A.; Russell, C.T.. Mega-Impacts into Planetary Bodies: Global Effects of the Giant Rheasilvia Impact Basin on Vesta. 43rd Lunar and Planetary Science Conference. The Woodlands, Texas: LPI. 2012-03 [2012-09-06]. contribution 1659, id.2757. 
  25. ^ Perry, Jason. Boösaule Montes. Gish Bar Times blog. 2009-01-27 [2012-06-30]. 
  26. ^ Schenk, P.; Hargitai, H. Boösaule Montes. Io Mountain Database. [2012-06-30]. 
  27. ^ 27.0 27.1 Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter. The mountains of Io: Global and geological perspectives from Voyager and Galileo. Journal of Geophysical Research. 2001, 106 (E12): 33201. doi:10.1029/2000JE001408. ISSN 0148-0227. 
  28. ^ Schenk, P.; Hargitai, H. Ionian Mons. Io Mountain Database. [2012-06-30]. 
  29. ^ Schenk, P.; Hargitai, H. Euboea Montes. Io Mountain Database. [2012-06-30]. 
  30. ^ 30.0 30.1 Martel, L. M. V. Big Mountain, Big Landslide on Jupiter's Moon, Io. NASA Solar System Exploration web site. 2011-02-16 [2012-06-30]. 
  31. ^ Moore, J. M.; McEwen, A. S.; Albin, E. F.; Greeley, R. Topographic evidence for shield volcanism on Io. Icarus. 1986, 67 (1): 181–183. doi:10.1016/0019-1035(86)90183-1. ISSN 0019-1035. 
  32. ^ 32.0 32.1 Schenk, P.; Hargitai, H. Unnamed volcanic mountain. Io Mountain Database. [2012-12-06]. 
  33. ^ 33.0 33.1 Schenk, P. M.; Wilson, R. R.; Davies, R. G. Shield volcano topography and the rheology of lava flows on Io. Icarus. 2004, 169 (1): 98–110. Bibcode:2004Icar..169...98S. doi:10.1016/j.icarus.2004.01.015. 
  34. ^ 34.0 34.1 Moore, Jeffrey M.; Schenk, Paul M.; Bruesch, Lindsey S.; Asphaug, Erik; McKinnon, William B. Large impact features on middle-sized icy satellites (PDF). Icarus. 2004-10, 171 (2): 421–443. Bibcode:2004Icar..171..421M. doi:10.1016/j.icarus.2004.05.009.  编辑
  35. ^ 35.0 35.1 Mitri, G.; Bland,M. T.; Showman, A. P.; Radebaugh, J.; Stiles, B.; Lopes, R. M. C.; Lunine, J. I.; Pappalardo, R. T. Mountains on Titan: Modeling and observations. Journal of Geophysical Research. 2010, 115 (E10002): 1–15 [2012-07-05]. Bibcode:2010JGRE..11510002M. doi:10.1029/2010JE003592. 
  36. ^ Lopes, R. M. C.; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Wye, L.; Radebaugh, J.; Stofan, E. R.; Janssen, M. A.; Neish, C. D.; Wall, S. D.; Wood, C. A.; Lunine, J. I.; Malaska, M. J. Cryovolcanism on Titan: New results from Cassini RADAR and VIMS. Journal of Geophysical Research: Planets. 2013-03-19, 118: 1–20 [2013-04-10]. doi:10.1002/jgre.20062. 
  37. ^ Giese, B.; Denk, T.; Neukum, G.; Roatsch, T.; Helfenstein, P.; Thomas, P. C.; Turtle, E. P.; McEwen, A.; Porco, C. C. The topography of Iapetus' leading side. Icarus. 2008, 193 (2): 359–371. doi:10.1016/j.icarus.2007.06.005. ISSN 0019-1035. 
  38. ^ Porco, C. C.; et al.. Cassini Imaging Science: Initial Results on Phoebe and Iapetus. Science. 2005, 307 (5713): 1237–1242. doi:10.1126/science.1107981. ISSN 0036-8075. PMID 15731440. 2005Sci...307.1237P. 
  39. ^ Kerr, Richard A. How Saturn's Icy Moons Get a (Geologic) Life. Science. 2006-01-06, 311 (5757): 29. doi:10.1126/science.311.5757.29. PMID 16400121. 
  40. ^ Ip, W.-H. On a ring origin of the equatorial ridge of Iapetus. Geophysical Research Letters. 2006, 33 (16): L16203. doi:10.1029/2005GL025386. ISSN 0094-8276. 
  41. ^ Moore, P.; Henbest, N. Uranus - the View from Voyager. Journal of the British Astronomical Association. 1986-04, 96 (3): 131–137 [2012-07-07]. Bibcode:1986JBAA...96..131M. 

外部链接[编辑]