安斯库姆四重奏

维基百科,自由的百科全书
跳转至: 导航搜索
安斯库姆四重奏的四组数据图表

安斯库姆四重奏Anscombe's quartet)是四组基本的统计特性一致的数据,但由它们绘制出的图表则截然不同。每一组数据都包括了11个(x,y)点。这四组数据由统计学家弗朗西斯·安斯库姆(Francis Anscombe)于1973年构造,他的目的是用来说明在分析数据前先绘制图表的重要性,以及离群值对统计的影响之大。

这四组数据的共同统计特性如下:

性质 数值
x平均数 9
x方差 11
y的平均数 7.50(精确到小数点后两位)
y的方差 4.122或4.127(精确到小数点后三位)
xy之间的相关系数 0.816(精确到小数点后三位)
线性回归线 y=3.00 + 0.500x(分别精确到小数点后两位和三位)

在四幅图中,由第一组数据绘制的图表(左上图)是看起来最“正常”的,可以看出两个随机变量之间的相关性。从第二组数据的图表(右上图)则可以明显地看出两个随机变量间的关系是非线性的。第三组中(左下图),虽然存在着线性关系,但由于一个离群值的存在,改变了线性回归线,也使得相关系数从1降至0.81。最后,在第四个例子中(右下图),尽管两个随机变量间没有线性关系,但仅仅由于一个离群值的存在就使得相关系数变得很高。

爱德华·塔夫特(Edward Tufte)在他所著的《图表设计的现代主义革命》(The Visual Display of Quantitative Information)一书的第一页中,就使用安斯库姆四重奏来说明绘制数据图表的重要性。

四组数据的具体取值如下所示。其中前三组数据的x值都相同。

安斯库姆四重奏
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

参考文献[编辑]

  • F.J. Anscombe, "Graphs in Statistical Analysis," American Statistician, 27 (February 1973), 17-21.
  • Tufte, Edward R. (2001). The Visual Display of Quantitative Information, 2nd Edition, Cheshire, CT: Graphics Press. ISBN 0961392142
  • Sangit Chatterjee and Aykut Firat (2007). "Generating Data with Identical Statistics but Dissimilar Graphics: A Follow up to the Anscombe Dataset", American Statistician, 61(3), 248-254. doi:10.1198/000313007X220057

外部链接[编辑]