戴维南定理

维基百科,自由的百科全书
跳转至: 导航搜索

戴维南定理Thevenin's theorem)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由於早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立電壓源、獨立電流源電阻线性网络的兩端,就其外部型態而言,在電性上可以用一个独立电压源V和一个松弛二端网络的串联電阻组合来等效。在單頻交流系統中,此定理不仅適用於電阻,也適用於廣義的阻抗

此定理陳述出一個具有電壓源電阻的電路可以被轉換成戴維南等效電路,這是用於電路分析的簡化技巧。戴維南等效電路對於電源供應器及電池(裡面包含一個代表內阻抗的電阻及一個代表電動勢的電壓源)來說是一個很好的等效模型,此電路包含了一個理想的電壓源串聯一個理想的電阻。

任何只包含電壓源、電流源及電阻的黑箱系統,都可以轉換成戴維南等效電路。

戴維南等效電路計算[编辑]

在計算戴維南等效電路時,必須聯立兩個由電阻及電壓兩個變數所組成的方程式,這兩個方程式可經由下列步驟來獲得:

  1. 在AB兩端開路(在沒有任何外電流輸出,亦即當AB點之間的阻抗無限大)的狀況下計算輸出電壓 VAB,此輸出電壓就是VTh
  2. 在AB兩端短路(亦即負載電阻為零)的狀況下計算輸出電流IAB,此時RTh等於VTh除以IAB
  • 此等效電路是由一個獨立電壓源VTh與一個電阻RTh串聯所組成。

其中的第2項也可以考慮成:

a. 首先將原始電路系統中的電壓源以短路取代,電流源以開路取代。
b. 此時,用一個電阻計從AB兩端测得系統的總電阻R,即等效電阻RTh

此戴維南等效電壓就是該原始電路輸出端的電壓,當在計算戴維南等效電壓時,依照分壓原則是很好用的,可將其中一端宣告成Vout,而另外一端為接地端。

戴維南等效電阻是由橫跨A與B兩端往系統“看”進來所量測到的,但重點是,要先將所有的電壓源及電流源以內部電阻取代。對於理想電壓源來說,可以直接用短路來取代;對於理想的電流源來說,可以直接用開路來取代。之後,電阻可以用串聯電路及並聯電路的方式計算出來。

戴維南等效電路的限制[编辑]

許多電路特別在短路的狀況下會變成非線性,所以戴維南等效電路通常只適用於有限定負載的範圍內。此外,戴維南等效電路只是從負載的觀點來看待電路系統,在戴維南等效電路中的功率耗損並不代表在真實系統中的功率耗損。

轉換成諾頓等效電路[编辑]

Thevenin to Norton2.PNG

右圖所示,左邊為諾頓等效電路,右邊為戴維南等效電路,諾頓等效電路與戴維南等效電路之間的關係,可由下列方程式來描述:

R_{Th} = R_{No} \!
V_{Th} = I_{No} R_{No} \!
\frac{V_{Th}}{R_{Th}} = I_{No}\!

其中 R_{th} R_{No} V_{th} I_{No} 分別代表戴維南等效電阻、諾頓等效電阻、戴維南等效獨立電壓源以及諾頓獨立電流源。

戴維南等效電路範例[编辑]

步驟 0: 原始電路
步驟 1: 計算等效輸出電壓
步驟 2: 計算等效輸出電阻
步驟 3: 轉換成等效線路

在這個範例中,計算等效電壓:


V_\mathrm{AB}
= {R_2 + R_3 \over (R_2 + R_3) + R_4} \cdot V_\mathrm{1}

= {1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega \over (1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega) + 2\,\mathrm{k}\Omega} \cdot 15 \mathrm{V}

= {1 \over 2} \cdot 15 \mathrm{V} = 7.5 \mathrm{V}

(注意:在A與B開路的狀況下,由於沒有任何電流流過R1,亦即在R1上沒有電壓降,所以在上面的計算中並不將R1列入考慮。)

計算等效電阻:


R_\mathrm{AB} = R_1 + \left ( \left ( R_2 + R_3 \right ) \| R_4 \right )

= 1\,\mathrm{k}\Omega + \left ( \left ( 1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega \right ) \| 2\,\mathrm{k}\Omega \right )

= 1\,\mathrm{k}\Omega + \left({1 \over ( 1\,\mathrm{k}\Omega + 1\,\mathrm{k}\Omega )} + {1 \over (2\,\mathrm{k}\Omega ) }\right)^{-1} = 2\,\mathrm{k}\Omega

參見[编辑]

外部鏈結[编辑]