斯奎斯数

维基百科,自由的百科全书
跳转至: 导航搜索

数论中,斯奎斯数Skewes' number)是指某些极大的数,以南非数学家斯坦利·斯奎斯(Stanley Skewes)的名字命名。他以此来表示满足

\pi(x) > \operatorname{li}(x)

的最小自然数x上界。式中,π表示素数计数函数,li则表示对数积分。经过数学家对这一上界的不断改进,目前发现在e^{727.95133}附近有满足上式的自然数,不过仍不清楚这是否是最小的斯奎斯数。

参见[编辑]

参考文献[编辑]

  • Bays, C.; Hudson, R. H., A new bound for the smallest x with π(x) > li(x), Mathematics of Computation. 2000, 69 (231): 1285–1296 
  • Brent, R. P., Irregularities in the distribution of primes and twin primes, Mathematics of Computation. 1975, 29 (129): 43–56, doi:10.2307/2005460 
  • Chao, Kuok Fai; Plymen, Roger, A new bound for the smallest x with π(x) > li(x), International Journal of Number Theory. 2005, 6 (03): 681–690, doi:10.1142/S1793042110003125 
  • Kotnik, T., The prime-counting function and its analytic approximations, Advances in Computational Mathematics. 2008, 29 (1): 55–70, doi:10.1007/s10444-007-9039-2 
  • Lehman, R. Sherman, On the difference π(x) − li(x), Acta Arithmetica. 1966, 11: 397–410 
  • Littlewood, J. E., Sur la distribution des nombres premiers, Comptes Rendus. 1914, 158: 1869–1872 
  • Skewes, S., On the difference π(x) − Li(x), Journal of the London Mathematical Society. 1933, 8: 277–283 
  • Skewes, S., On the difference π(x) − Li(x) (II), Proceedings of the London Mathematical Society. 1955, 5: 48–70 
  • te Riele, H. J. J., On the sign of the difference π(x) − Li(x), Mathematics of Computation. 1987, 48 (177): 323–328 
  • Rosser, J. B.; Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics. 1962, 6: 64–94 
  • Saouter, Yannick; Demichel, Patrick, A sharp region where π(x) − li(x) is positive, Mathematics of Computation. 2010, 79 (272): 2395–2405, doi:10.1090/S0025-5718-10-02351-3 
  • Zegowitz, Stefanie, On the positive region of \pi(x)-\operatorname{li}(x). 2010:  69 pp. 
  • Rubinstein, M.; Sarnak, P., Chebyshev's bias, Experimental Mathematics. 1994, 3 (3): 173–197 
  • Wintner, A., On the distribution function of the remainder term of the prime number theorem, American Journal of Mathematics. The Johns Hopkins University Press. 1941, 63 (2): 233–248, doi:10.2307/2371519