斯奎斯数

维基百科,自由的百科全书
跳转至: 导航搜索

数论中,斯奎斯数Skewes' number)是指某些极大的数,以南非数学家斯坦利·斯奎斯(Stanley Skewes)的名字命名。他以此来表示满足

\pi(x) > \operatorname{li}(x)

的最小自然数x上界。式中,π表示素数计数函数,li则表示对数积分。经过数学家对这一上界的不断改进,目前发现在e^{727.95133}附近有满足上式的自然数,不过仍不清楚这是否是最小的斯奎斯数。

参见[编辑]

参考文献[编辑]

  • Bays, C.; Hudson, R. H., A new bound for the smallest x with π(x) > li(x), Mathematics of Computation, 2000, 69 (231): 1285–1296, MR 1752093 
  • Brent, R. P., Irregularities in the distribution of primes and twin primes, Mathematics of Computation, 1975, 29 (129): 43–56, doi:10.2307/2005460, JSTOR 2005460, MR 0369287 
  • Chao, Kuok Fai; Plymen, Roger, A new bound for the smallest x with π(x) > li(x), International Journal of Number Theory, 2005, 6 (03): 681–690, arXiv:math/0509312, doi:10.1142/S1793042110003125, MR 2652902  已忽略未知参数|unused_data= (帮助)
  • Kotnik, T., The prime-counting function and its analytic approximations, Advances in Computational Mathematics, 2008, 29 (1): 55–70, doi:10.1007/s10444-007-9039-2 
  • Lehman, R. Sherman, On the difference π(x) − li(x), Acta Arithmetica, 1966, 11: 397–410, MR 0202686 
  • Littlewood, J. E., Sur la distribution des nombres premiers, Comptes Rendus, 1914, 158: 1869–1872 
  • Skewes, S., On the difference π(x) − Li(x), Journal of the London Mathematical Society, 1933, 8: 277–283 
  • Skewes, S., On the difference π(x) − Li(x) (II), Proceedings of the London Mathematical Society, 1955, 5: 48–70, MR 0067145 
  • te Riele, H. J. J., On the sign of the difference π(x) − Li(x), Mathematics of Computation, 1987, 48 (177): 323–328, JSTOR 2007893, MR 0866118 
  • Rosser, J. B.; Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics, 1962, 6: 64–94, MR 0137689 
  • Saouter, Yannick; Demichel, Patrick, A sharp region where π(x) − li(x) is positive, Mathematics of Computation, 2010, 79 (272): 2395–2405, doi:10.1090/S0025-5718-10-02351-3, MR 2684372 
  • Zegowitz, Stefanie, On the positive region of \pi(x)-\operatorname{li}(x), 69 pp., 2010 
  • Rubinstein, M.; Sarnak, P., Chebyshev's bias, Experimental Mathematics, 1994, 3 (3): 173–197, MR 1329368 
  • Wintner, A., On the distribution function of the remainder term of the prime number theorem, American Journal of Mathematics (The Johns Hopkins University Press), 1941, 63 (2): 233–248, doi:10.2307/2371519, JSTOR 2371519, MR 0004255