最大稳定极值区域

维基百科,自由的百科全书
跳转至: 导航搜索

计算机视觉领域, 最大稳定极值区域 (MSER)(Maximally Stable Extremal Regions)是一种用于在图像中进行斑点检测英语blob detection的方法。这个方法由Matas等人[1]提出,用于在两个不同视角的图片中寻找对应关系(correspondence problem)。这种方法从图像中提取全面的元素对应关系,有助于宽基线匹配(wide-baseline matching),以及更好的立体匹配和物体识别算法。


其他应用[编辑]

参见[编辑]

外部链接[编辑]

  • VLFeat, an open source computer vision library in C (with a MEX interface to MATLAB), including an implementation of MSER
  • OpenCV, an open source computer vision library in C/C++, including an implementation of Linear Time MSER
  • Detector Repeatabilty Study, Kristian Mikolajczyk Binaries (Win/Linux to compute MSER/HarrisAffine... . Binary used in his repeatability study.

参考文献[编辑]

  1. ^ J. Matas, O. Chum, M. Urban, and T. Pajdla. "Robust wide baseline stereo from maximally stable extremal regions." Proc. of British Machine Vision Conference, pages 384-396, 2002.