有形數

维基百科,自由的百科全书
跳转至: 导航搜索

有形數是可以排成有一定規律形狀的。有形數是畢達哥拉斯學派的關注重點之一,他們認為數和形有不可分割的關係。有形數都是自然數,它們可以用小石子堆砌。有形數是將數形象化的方法。

一般地,任意一个自然数都可以表示为m个m边形数的和。

種類[编辑]

有形數可依照該數能排成的形狀分成:

多邊形數、多面體數、中心多邊形數中心多面體數星數、角錐數、角柱數、多胞體數.......等

例子[编辑]

三角形數[编辑]

能排成三角形有形數

三角形數.

17个三角形數是

13610152128364555667891105120136153……(OEIS中的数列A000217

梯形數[编辑]

能排成梯形有形數

2 7 15
** ***
****
****
*****
******

15個梯形數為

2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345......(OEIS中的数列A005449

梯形数公式:(顶层数+底层数)×层数÷2

中心五邊形數[编辑]

排成從中心延伸出去的五邊形

中心五邊形數

15項的中心五邊形數為

1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526......(OEIS中的数列A005891).

四角錐數[编辑]

能堆成四角錐有形數

四角錐數的計算方式

13四角錐數

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819...... (OEIS中的数列A000330).

六角星數[编辑]

能排成六角星有形數

1 13 37
* *
****
***
****
*
*
**
*******
******
*****
******
*******
**
*

前13個六角星數

1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937......(OEIS中的数列A003154

參見[编辑]