柯尔莫诺夫-斯米尔诺夫检验

维基百科,自由的百科全书
跳转至: 导航搜索

柯尔莫哥洛夫-斯米尔诺夫检验Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

Kolmogorov 分布[编辑]

Kolmogorov分布随机变量

K=\sup_{t\in[0,1]}|B(t)|,

的分布,其中 B(t)Brown桥。K的累积分布函数由下式给出

\operatorname{Pr}(K\leq x)=1-2\sum_{i=1}^\infty (-1)^{i-1} e^{-2i^2 x^2}=\frac{\sqrt{2\pi}}{x}\sum_{i=1}^\infty e^{-(2i-1)^2\pi^2/(8x^2)}.

柯尔莫哥洛夫-斯米尔诺夫检验的统计量形式及其在零假设下的渐近分布是由安德雷·柯尔莫哥洛夫[1]提出的。


参考文献[编辑]

  • Justel, A., Peña, D. and Zamar, R. (1997) A multivariate Kolmogorov-Smirnov test of goodness of fit, Statistics & Probability Letters, 35(3), 251-259.
  • Eadie, W.T.; D. Drijard, F.E. James, M. Roos and B. Sadoulet. Statistical Methods in Experimental Physics. Amsterdam: North-Holland. 1971: 269–271. ISBN 0-444-10117-9. 
  • Stuart, Alan; Ord, Keith; Arnold, Steven [F.]. Classical Inference and the Linear Model. Kendall's Advanced Theory of Statistics 2A Sixth. London, New York: Arnold, Oxford University Press. 1999: 25.37–25.43. ISBN 0-340-66230-1. MR 1687411. 
  • Corder, G.W., Foreman, D.I. (2009).Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach Wiley, ISBN 978-0-470-45461-9
  • Stephens, M.A. (1979) Test of fit for the logistic distribution based on the empirical distribution function, Biometrika, 66(3), 591-5.
  1. ^ Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione. G. Inst. Ital. Attuari. 1933, 4: 83. 

外部連結[编辑]