标架丛

维基百科,自由的百科全书
跳转至: 导航搜索

数学中,标架丛Frame bundle)是一个与任何向量丛 E 相伴主丛。F(E) 在一点 x 的纤维是 Ex 的所有有序基或曰标架。一般线性群通过基变更自然作用在 F(E) 上,给出标架丛一个主 GLk(R)-丛结构,这里 kE 的秩。

一个光滑流形的标架丛是与其切丛相伴的丛。因此它有经常称为切标架丛tangent frame bundle)。

定义与构造[编辑]

EX拓扑空间 X 上一个 k 阶实向量丛。在点 xX 的一个标架是向量空间 Ex 的一个有序基。等价地,一个标架可以视为线性同构

p : \mathbb R^k \to E_x.

x 的所有标架集合,记作 Fx,所有可逆 k×k 矩阵组成的一般线性群 GLk(R) 在它上面有一个自然右作用:一个群元素 g ∈ GLk(R) 通过复合作用在 p 的标架上给出一个新标架

p\circ g:\mathbb R^k\to E_x.

GLk(R) 在 Fx 上这个作用是自由传递的(这是标准线性代数结论:存在惟一可逆线性变换将一个基变为另一个)。作为一个拓扑空间 Fx 同胚于 GLk(R),但它没有群结构,因为没有“优先的标架”。空间 Fx 称为一个 GLk(R)-torsor

E标架丛,记作 F(E) 或 FGL(E),是所有 Fx 的不交并:

\mathrm F(E) = \coprod_{x\in X}F_x.

F(E) 中每个点是一个二元组 (x, p),其中 xX 中一点而 px 处一个标架。存在自然投影 π : F(E) → X 将 (x, p) 送到 x。群 GLk(R) 如上右作用在 F(E) 上。这个作用显然是自由的且轨道恰是 π 的纤维。

标架丛 F(E) 可给一个自然的拓扑,其丛结构由 E 确定。设 (Ui, φi) 是 E 的一个局部平凡化。则对每个 xUi 有一个线性同构 φi,x : ExRk。这个数据决定了一个双射

\psi_i : \pi^{-1}(U_i)\to U_i\times \mathrm{GL}_k(\mathbb R),\,

由下式给出

\psi_i(x,p) = (x,\varphi_{i,x}\circ p).

有了这个双射后,每个 π−1(Ui) 可赋予 Ui × GLk(R) 的拓扑。则 F(E) 上的拓扑是由包含映射 π−1(Ui) → F(E) 余诱导的最终拓扑

有了上面所有数据后,标架丛 F(E) 成为 X 上一个结构群为 GLk(R) 的主纤维丛,具有局部平凡化 ({Ui}, {ψi}),可以验证 F(E) 的转移函数E 的相同。

上面所有工作对光滑范畴也成立:如果 E 是光滑流形 M 上一个光滑向量丛,则 E 的标架丛可赋予 M 上光滑主丛结构。

相伴向量丛[编辑]

向量丛 E 与它的标架丛 F(E) 是相伴丛。每一个决定了另一个。标架丛 F(E) 可如上由 E 构造出来,或更抽象地利用纤维丛构造定理fiber bundle construction theorem)。在后一个方法中,F(E) 与 E 有同样底、平凡化邻域以及转移函数,但有抽象纤维 GLk(R),这里结构群 GLk(R) 作用在纤维 GLk(R) 上是左乘。

给定一个线性表示 ρ : GLk(R) → V,有一个向量丛相伴与 F(E)

\mathrm F(E)\times_{\rho}V,\,

它由乘积 F(E) × V 模去等价关系 (pg,v) ~ (p,ρ(g)v),对所有 g 属于 GLk(R),给出。记等价类为 [p,v]。

向量丛 E 自然同构于丛 F(E) ×ρ Rk,这里 ρ 是 GLk(R) 在 Rk 上的基本表示。同构由

[p,v]\mapsto p(v)

给出,这里 vRk 中一个向量而 p : RkExx 处一个标架。容易验证这个映射是良定义的。

任何相伴与 E 的向量丛可由如上构造给出。例如,E对偶丛由 F(E) ×ρ* (Rk)* 给出,这里 ρ* 是基本表示的对偶E张量丛可类似地构造。

切标架丛[编辑]

一个光滑流形 M切标架丛(或简称标架丛)是与 M切丛相伴的标架丛。 M 的标架丛通常记作 FM 或 GL(M) 而不是 F(TM)。如果 Mn-维的则切丛的秩为 n,所以 M 的标架丛是 M 上一个主 GLn(R) 丛。

光滑标架[编辑]

M 的标架丛的局部截面称为 M 上的光滑标架。主丛横截定理说 M 中任何有光滑标架的开集 U 上标架丛是平凡的。给定一个光滑标架 s : U → FU,平凡化 ψ : FUU × GLn(R) 由

\psi(p) = (x, s(x)^{-1}\circ p)

给出,这里 px 处一个标架。从而一个流形是可平行化的当且仅当 M 的标架丛有一个整体截面。

因为 M 的切丛在 M 的任何坐标邻域是可平凡化的,故标架丛也是。事实上,给定任何坐标邻域 U 带有坐标 (x1,…,xn),坐标向量场

\left(\frac{\partial}{\partial x^1},\cdots,\frac{\partial}{\partial x^n}\right)

定义了 U 上一个光滑标架。在标架丛上工作的一个好处是它们允许我们处理标架而不是坐标架;我们可选取对手中问题合适的标架。这有时称为活动标架法

焊接形式[编辑]

流形 M 的标架丛是一类特殊的主丛,它的几何本质上系于 M 的几何。这种关系可用 FM 上一个称之为焊接形式(或称基本重言 1-形式)向量值 1-形式表示。设 x 是流形 M 上一点,px 处一个标架,故

p : \mathbb{R}^n\to T_xM

RnMx 处切丛的一个线性同构。FM 的焊接形式是一个 Rn-值 1-形式 θ,定义为

\theta_p(\xi) = p^{-1}\mathrm d\pi(\xi)\,

这里 ξ 与 FM 相切于 (x,p),p-1:TxM → Rn 是标架映射的逆,dπ 是投影映射 π: FMM微分。焊接形式是水平的,它在与 π 的纤维相切的向量上为零,以及右等变,即

R_g^*\theta = g^{-1}\theta\,

这里 Rg 是由 g ∈ GLn(R) 的左平移。FM 上这样性质的形式称为基本或张量性形式。这样的形式与 TM-值 1-形式一一对应,从而与 M 上光滑丛映射 TMTM 一一对应。这样看来,θ 恰好是 TM恒等映射

标准正交标架丛[编辑]

如果向量丛 E 配有一个黎曼丛度量,则每个纤维 Ex 不仅是一个向量空间而且是一个内积空间。这样便可以讨论 Ex 的所有标准正交标架集合。Ex 的一个标准正交标架是 Ex 的一个有序标准正交基,或等价地,一个等距线性同构

p:\mathbb R^k \to E_x

这里 Rk 配有标准欧几里得度量正交群 O(k) 通过右复合自由传递作用在所有标准正交标架上。换句话说,所有标准正交标架集合是一个右 O(k)-torsor

E标准正交标架丛,记作 FO(E),是在底空间 X 上每一点 x 处的所有标准正交标架集合。它可用完全类似于通常标架丛的方法构造出来。秩 k 的黎曼向量丛 EX 的标准正交标架是 X 上一个主 O(k)-丛。同样,此构造在光滑范畴一样成立。

如果向量丛 E 可定向,则我们可定义 E定向标准正交标架丛,记作 FSO(E),是所有正定向标准正交标架丛,这是一个主 SO(k)-丛。

如果 M 是一个 n-维黎曼流形,则 M 的标准正交标架丛,记作 FOM 或 O(M),是与 M 的切丛(由定义它配有一个黎曼度量)相伴的标准正交标架丛。如果 M 可定向,则也有定向标准正交标架丛 FSOM

给定一个黎曼向量丛 E,标准正交标架丛是一般线性标架丛的 O(k)-子丛。换句话说,包含映射

i:{\mathrm F}_{\mathrm O}(E) \to {\mathrm F}_{\mathrm{GL}}(E)\,

是一个主丛映射。我们说 FO(E) 是 FGL(E) 的结构群从 GLk(R) 到 O(k) 的约化

G-结构[编辑]

如果光滑流形 M 有额外的结构,通常自然地考虑 M 全标架丛的一个适应于给定结构的子丛。例如,如果 M 是一个黎曼流形,我们从上面看到自然地去考虑 M 的标准正交标架丛。标准正交标架丛只不过是 FGL(M) 的结构群到正交群 O(n) 的约化。

一般地,如果 M 是一个光滑 n-流形,G 是 GLn(R) 的一个子李群,我们定义 M 上一个 G-结构为 FGL(M) 结构群到 G 的一个约化。具体地说,这是 M 上一个主 G-丛 FG(M),以及 M 上一个 G-等变丛映射

{\mathrm F}_{G}(M) \to {\mathrm F}_{\mathrm{GL}}(M).\,

在这种语言中,M 上一个黎曼度量给出 M 上一个 O(n)-结构。下面是其它一些例子。

  • 每个定向流形有一个定向标架,这就是 M 上一个 GLn+(R)-结构。
  • M 上一个体积形式确定了 M 上一个 SLn(R)-结构。
  • 一个 2n-维辛流形有一个自然的 Sp2n(R)-结构。
  • 一个 2n-维殆复流形有一个自然的 GLn(C)-结构。

在某些例子中,M 上一个 G-结构惟一确定了 M 上对应的结构。例如 M 上一个 SLn(R)-结构确定了 M 上一个体积形式。但是,在某些情形,比如辛与复流形,需要一个可积性条件M 上一个 Sp2n(R)-结构惟一确定了 M 上一个非退化 2-形式,但对 M 是辛的,这个 2-形式必须也是的。

参考文献[编辑]

  • Kobayashi, Shoshichi; Nomizu, Katsumi, Foundations of Differential Geometry, Vol. 1. New, Wiley-Interscience. 1996, ISBN 0471157333 
  • Kolář, Ivan; Michor, Peter; Slovák, Jan, Natural operators in differential geometry (PDF), Springer-Verlag. 1993 
  • Sternberg, S. Lectures on Differential Geometry (2nd ed.). New York: Chelsea Publishing Co. 1983. ISBN 0-8218-1385-4.