欧拉四平方和恒等式

维基百科,自由的百科全书
跳转至: 导航搜索

欧拉四平方和恒等式说明,如果两个数都能表示为四个平方数的和,则这两个数的积也能表示为四个平方数的和。等式为:

(a_1^2+a_2^2+a_3^2+a_4^2)(b_1^2+b_2^2+b_3^2+b_4^2)=\,
(a_1 b_1 - a_2 b_2 - a_3 b_3 - a_4 b_4)^2 +\,
(a_1 b_2 + a_2 b_1 + a_3 b_4 - a_4 b_3)^2 +\,
(a_1 b_3 - a_2 b_4 + a_3 b_1 + a_4 b_2)^2 +\,
(a_1 b_4 + a_2 b_3 - a_3 b_2 + a_4 b_1)^2\,

欧拉在1748年5月4日寄给哥德巴赫的一封信中提到了这个恒等式。[1][2]它可以用基本的代数来证明,在任何交换环中都成立。如果asbs实数,有一个更加简洁的证明:这个等式表达了两个四元数的积的绝对值就是它们绝对值的积的事实,就像婆罗摩笈多-斐波那契恒等式复数的关系一样。

拉格朗日用这个恒等式来证明四平方和定理

参见[编辑]

参考文献[编辑]

  1. ^ Leonhard Euler: Life, Work and Legacy, R.E. Bradley and C.E. Sandifer (eds), Elsevier, 2007, p. 193
  2. ^ Mathematical Evolutions, A. Shenitzer and J. Stillwell (eds), Math. Assoc. America, 2002, p. 174