水分子

维基百科,自由的百科全书
跳转至: 导航搜索
IUPAC名
氧烷〔Oxidane〕、水〔Water〕
别名 一氧化二氢(Dihydrogen Monoxide)
氢氧化氢(Hydrogen Hydroxide)
氢氧酸(Hydroxic acid)
氧化氢(Hydrogen Oxide)
羟酸(Hydroxylic acid、Hydroxilic acid)
二氢氧化物
μ-氧合二氢
识别
CAS号 7732-18-5
RTECS ZC0110000
性质
化学式 H2O
摩尔质量 18.01524 g·mol⁻¹
外观 白色或近透明固体,帶淺藍色;清澈液體;無色氣體
密度 1000 kg·m−3(液,4 °C)
917 kg·m−3(固)
熔点 °C, 32 °F (273.15 K)[1]
沸点 100 °C(212 °F,373.15 K)[1]
pKa 15.74
~35-36
pKb 15.74
黏度 0.001 Pa·s,20 °C
结构
晶体结构 六方
参见
分子构型 角形
偶极矩 1.85 D
危险性
主要危害 水中毒溺水(参见一氧化二氢恶作剧
NFPA 704
NFPA 704.svg
0
0
0
 
相关物质
相关溶剂 丙酮甲醇
相关化学品 水蒸气
重水双氧水
若非注明,所有数据均出自一般条件(25 ℃,100 kPa)下。

(化学式:H2O)是地球表面上最多的分子,除了以气体形式存在于大气中,其液体固体形式占据了地面70-75%的组成部分。标准状况下,水在液体和气体之间保持动态平衡。室温下,它是无色,无味,透明的液体。作为通用溶剂之一,水可以溶解许多物质。因此,自然界极少有水的纯净物

水的形态[编辑]

水以多种形态存在,固态的水即我们熟知的,气态的水即我们所说的水蒸气(无色,我们看到的白色水气是水蒸气冷凝后的液态小水滴),而一般只有液的水才被視為水。在其臨界溫度及壓力(647K及22.064MPa)時,水分子會变为一種“超臨界”狀態,液态般的水滴漂浮于气态之中。

重水是普通水的氢原子被它更重的同位素所取代而形成的。其化学性质和普通水基本一致,常用在核反应堆中减速中子

在宇宙中[编辑]

银河系星云中被探明存在水,由于是构成宇宙的主要元素,科学家认为其他星系中依然存在大量水。

由于星云尘埃的凝聚,形成各种彗星行星矮行星及其卫星,水也会存在于这些天体上。在太阳系中,水以固体形式存在于以下天体:

目前尚只在地球上发现液态形式的水。科学家预测液态水也极有可能存在于土卫二的表面。

在地球上[编辑]

水以水循环为载体存在于地球上,包括大气层土壤含水、河流水、地下水植物含水。

地球上的水含量(全部水)大约是13.6億立方公里。這包括了:

  • 1,320,000,000 km³(97.2%)在海洋中。
  • 25,000,000 km³(1.8%)在冰川冰盖冰原中。
  • 13,000,000 km³(0.9%)是地下水
  • 250,000 km³(0.02%)是淡水,包括河湖、内陆海。
  • 13,000 km³(0.001%)存在于大气层中。

物理化学性质[编辑]

纯水密度[编辑]

大部分物質固時的密度比液態時要高;因此,一塊固態純“物質”會沉入液態的純“物質”中。但是,一塊普通的卻會在水上浮,這是因為固態水的密度比液態水要“低”。這是水的一項非常重要的特性。在室溫時,液態水在溫度降低時密度會增加,這跟一般物質無異。但在接近冰點的3.98°C 時,水達到其最大密度,而且當水的溫度繼續向冰點下降,在標準狀態下液態水會膨脹,密度並因此會變“低”。這現象的物理原因跟普通晶體結構有關,該結構又被稱為六角形冰Ih。水、都會在凝固時膨脹;其他大部份材料則收縮。但要注意的是,並不是所有種類的冰密度都比液態水低。例如高密度非結晶冰超高密度非結晶冰的密度都比液態純水要高。因此,普通冰密度比水高的理由並不能容易地憑直覺所得,而且它跟氫鍵固有的不尋常特性有很大關係。

總的來說,水在凝固時的膨脹是由於其以氫鍵不尋常的彈性而排成的縱列分子結構,以及能量特別低的六角形晶體形態(也就是標準狀態下所採用的形態)。那就是當水冷卻的時候,它嘗試在晶格形態下成堆,而該晶格會把鍵的旋轉振動分量拉長,所以一个水分子会被邻近的几个分子推挤,這實際上就減少了當水在標準狀態下成冰時的水密度ρ

這特性在地球生態系統中的重要性是不言而喻的。例如,“如果”水凝固的時候密度較高的話,極地環境中的湖泊和海洋最後都會結成冰(從上至下)。這是因為此時冰會沉到湖底及河床,而必要的升溫現象(見下文)在夏季時則因暖水層質量比底下的固態冰層低而發生不了。自然界的一個重要特徵就是上述並不會在環境中自然發生。

然而,冷水(在相關生物系統中的一般自然設定下)因氫鍵而在從冰點以上的3.98°C所開始產生的不尋常膨脹,為淡水生物在冬季提供了一重要的好處。在表面上被冷凍的水沉下,形成提供對流的水流並冷卻整個水體,但當湖水到達4°C 時,若繼續冷卻則表面水密度降低,形成一表面層,該層水最後會凝固成冰。由於向下的冷水流被密度的轉變擋住,冬季任何由淡水所成的大水體最冷的水都會在表面附近,離開湖底及河床。這說明了多種不為人知的冰性質,它們跟湖中的冰相關及像二十世紀早期科學家卡夫特(Horatio D. Craft)所描述的“跌出湖的冰”。

以下是水在不同温度下的密度(克每立方厘米):[2]

温度(°C) 密度(g/cm³)
30 0.9957
20 0.9982
10 0.9997
3.98 1.0000
0 0.9998
−10 0.9982
−20 0.9935
−30 0.9839

0 °C以下的密度值参看过冷水

盐水密度[编辑]

水的密度不只取決於水溫,這是因為鹽水的密度與純水不同。冰仍然會在海洋上浮,否則它們會把水底冷凍起來。然而,海洋的鹽份把冰點降低了約2°C並把水最大密度的溫度降至冰點。那就是為何當海水向着冰點冷卻時,裏面的下向冷水流不被膨脹所擋掉的原因。海洋中水溫在冰點附近的冷水繼續下沉。故此,任何試圖在像北冰洋這樣的冷水底下生存的生物,冬季普遍居住水溫比表面結冰的淡水河、湖要再低4 oC。

隨着鹽水表面開始結冰(當處於平均海水的3.5‰鹽度時,冰點為-1.9 oC),所形成的冰實際上不含鹽分,且密度與淡水冰相若。這種冰會浮在水上,且被“凍出來”的鹽分會增加水的鹽度而使得此时海水的密度比正常海水稍高,這個作用被稱為“鹽水棄置”。這密度較高的鹽水會因對流而沉下,而補上的鹹水亦受此作用影響。這作用為表面提供了-1.9 oC淡水冰。成形中的冰下鹹水增加的密度,是它向底下沉的原因。

可压缩性[编辑]

水的压缩系数随压强和温度变化。在0℃和0气压情况下,水的压缩系数是5.1×107 bar−1[3] 随着压力的增大,压缩系数不断减小,在0℃达到3.9×107 bar−1。水的本体模量是2.2×109 Pa[4] 非气体,尤其是水的低可压缩性,使人们往往错误地认为水不可压缩。水的低可压缩性,意味着即便是在1000米深的海底,压强达到4×107 Pa,水的体积也仅仅减少了1.8%。[4]

三相点[编辑]

固態、液態和氣態水能同時存在的溫度壓力就被稱為水的三相點。這點用於制定溫度單位(開氏度,間接攝氏度,甚至華氏度都是)。約定俗成的三相點溫度為273.16 K (0.01 oC),而壓力則為611.73 Pa。這個壓力是頗低的,約為海平面大氣壓力(101,325 Pa)的1/166。火星這行星上的表面大氣壓力跟三相點壓力非常地相近,故火星的零海拔或“海平面”被規定為大氣壓力跟三相點壓力一致的高度。

姆佩巴效应[编辑]

姆佩巴效应,亦称姆潘巴现象,是指热水在一定条件下比冷水更快结冰的奇怪现象。但仍可以用蒸发对流过冷热绝缘来解释。

热冰[编辑]

热冰是水的另一个惊人现象,即水在室温下,加以106伏特的电场,也能变成冰。[5]

这个现象被用来解释云的形成,云层里的冰晶初次形成时需要−10 °C的低温,而后来再次结冰只需要−5 °C,这意味着晶体的结构发生了改变。[6]

表面张力[编辑]

水的表面张力

由于水具有所有非金属液体中最大的表面张力值72.8 mN/m,使水滴保持相对稳定。当少量水滴滴在玻璃板上,即可观察到水的表面张力:水滴继续保持液滴状态。另一个常见的例子是,向一杯注满水的玻璃杯中缓缓投放硬币,水不会立刻溢出,而是向上凸起。水的这一特性对生物来说非常重要。例如,植物吸水时,水通过茎里的木质部向上运输。强大的分子间作用力维持维管束中水的柱状形态,粘接性使水柱聚集,粘性是水紧贴维管束壁,而张力则能防止葉面蒸腾作用导致水柱断裂。其他低张力的液体则会导致液柱裂开,形成真空,使蒸腾作用失效。

导电性质[编辑]

不包含任何离子的水是优良的绝缘体,可即使是去离子水也不是完全没有离子的。水在绝对零度以上的任何温度下都会发生自偶电离。由于水是优良的溶剂,所以其中总会含有微量的溶质,多数情况下为无机盐。即使很少量的杂质也会使水导电,因为溶于水中的盐会电离为自由离子

水可由通电而分解为氢气氧气两种物质,此过程被称为电解。此時水分子电离出的H+及OH離子,分別被拉向陰極陽極。兩個H+在陰極獲得兩電子形成氣體H2,而四個OH則於陽極結合並釋放出氧氣、分子水及四個電子。氣體生成氣泡升上水面,可被收集。已知水電阻率的最大理論值於25 o時約為182 ·m2/m(18.2 MΩ·cm2/cm)。此數字與超純水系統逆滲透時觀測到的相當一致,該系統的水經超過濾及去電離處理,半導體製造廠等會用到。鹽或酸等污染物水平即使超過一萬億分之一(ppt),都會使電阻率水平大幅下降達好幾個kΩ·m2/m(相等於電導上升幾百nS/m)。

水的偶極性[编辑]

水的一項重要特性就是它的極性。水分子呈角狀,當中氫原子位於末端而氧原子則在頂點。由於氧的電負性比氫高,所以分子中有氧原子的一邊電荷會偏負。帶這樣一個電荷差的分子被稱為偶極子。電荷差使得水分子互相吸引(偏正電的區域會被偏負電的區域吸引),同時亦使它們和其他極性分子互相吸引。這種吸引力被稱為氫鍵,它解釋了許多水的特性。某些分子,如二氧化碳,原子間負電性亦有差異,但不同之處在於二氧化碳分子形狀成對稱排列,因此對立電荷會被相互抵消。如果將電源靠近小水柱時亦可觀察到水的此一現象,這現象會使水向電源方向彎曲。

儘管氫鍵是一種相對較弱的引力(跟連接水分子內原子的共價鍵比較時),但是它造就了水的多個特性。其中一個特性就是水相對較高的熔點沸點溫度,因為需要更多 能才能夠克服分子間的氫鍵。相近的化合物硫化氫(H2S)的氫鍵較水的弱,即使它的質量是水的兩倍,在室溫下還是氣體。水分子間額外的鍵為液態水帶來了高比熱容。這種高比熱容使水成為一種較佳的熱量儲存媒介。

氫鍵也為水帶來了結冰時不尋常的表現。當被冷凍至冰點附近時,由於它們能透過重組來使能量最小化的關係,所以氫鍵的存在意味着分子可以形成帶六角形晶體結構的冰,這種冰的密度實際上較低:因此於固態時(冰)會浮水上。亦即是說,水結冰時會膨脹,而差不多其他全部物质凝固時都會沉下。

在足夠壓力下,固體密度比液體低會帶來一個有趣的效果。當壓力增加時熔點下降,而當熔點溫度比周圍環境低時冰會熔化。要使熔點大幅度下降需要增加相當大的壓力——溜冰者所施加的壓力只會把熔點下調約0.09 oC。

水作为溶剂[编辑]

由于水的极性,水是一种良好溶剂。当离子极性化合物进入水中,就会被水分子立刻包围。水的相对分子质量使一个溶质分子可以被多个水分子包围。偶極中偏負電的部分受溶質中的正電部份吸引,而偶極中的正電部分則反之亦然。

一般来说,离子分子和极性分子诸如酸,酒精,和盐类比较容易溶解在水中,而非极性分子如脂类,油,等有机物在水中由于范德瓦耳斯力作用而聚集。

一个离子化合物溶质的典型例子是食盐(NaCl),它会在水中分离为Na+阳离子和Cl阴离子,每个被水分子包围的离子会从晶格上移走,进入溶液。一个非离子溶质的例子是蔗糖,水中的氢离子与蔗糖的-OH基结合,从而将蔗糖分子带入溶液。

水的两性[编辑]

在化学上,水是一种两性物质,即水可以同时充当,有时候水也被成为“氢氧酸”就是这个原因。当水的pH值为7(中性)时,氢氧根离子(OH)浓度等于水合氢离子(H3O+)浓度。当化学平衡被破坏时,两种离子的比例发生变化,而表现出酸性或碱性。

根据布朗斯特-劳里酸碱理论(Brønsted-Lowry)系统,酸被解释为一种在反应中失去质子(一个 H+离子)的物质,而碱则是在反应中得到质子的物质。所以在反应中遇到强酸,水就充当碱,相反,遇到强碱,水就充当酸。例如,在平衡状态中,水从HCl得到H+离子,充当碱:

HCl + H2O H3O+ + Cl

在和氨水的反应中,H2O 失去H+离子,水充当酸:

NH3 + H2O NH4+ + OH

水的酸性[编辑]

理论上,在298 K温度下的水的pH值为7。而事实上,纯水的制备是非常困难的。暴露在空气中的水会迅速的吸收二氧化碳,生成低浓度的碳酸(pH极限值为5.7)。云滴形成以及雨滴掉落的过程中,水也会吸收空气中CO2,因此大部分水都是弱酸性的。如果空气中氮氧化物和硫氧化物含量过高,就会导致酸雨

水分子的孤對電子[编辑]

水分子上還有未成鍵的孤對電子,能與放出的氫離子結合生成水合氫離子,所以水也是一種路易斯鹼

H2O+H+→H3O+

水的氢键结合[编辑]

一個水分子最多能形成四條氫鍵,因為它能夠在接受两个电子的同时也可以提供兩個電子。其他分子,如氟化氫甲醇,都能形成氫鍵,但它們的熱力學、動能及結構方面都沒有像水那樣的異常表現。水跟其他氫鍵液體的顯然不同之處在於,水是惟一能形成四條氫鍵的分子,其他分子不能這樣做的原因有二:一是由於它們不能再提供或接受氫,二是由於這樣做會形成引起立體效應的殘餘物。由水的四條氫鍵所形成的正四面體序列,產生了開放結構以及三維結合網絡,跟簡單液體內部的緊密結構截然不同。儘管水是有氫鍵結合網絡的液體,而二氧化硅則有高熔點的電價網絡,但兩者的異常表現仍有相近之處。水適用於生命體,而且被牠們採用,原因在於它在各生物程序適應的一系列溫度狀況下展示出獨有的性質,包括水合作用

一般被認為水的氫鍵主要是由靜電力及一些電價性所導致的。氫鍵的類電價性質由萊納斯·鮑林於1930年代預測,至今仍待實驗及理論計算的明確證明。

水分子的量子特性[编辑]

儘管水的分子式一般被認為是分子熱力學的穩定結果,但於1995年開始的近期研究指出在水的亞原子量子水平時,水表現得較像H3/2O,而不是H2O。[7] 此結果可能對生物化學物理系統裏的氫鍵等水平上產生重要的分支課題。實驗指出當中子質子與水碰撞時,它們的散射方式表明它們只受1.5:1的氫氧比率所影響。然而,能觀測到這反應的時間段需以微微微秒(10−18 s)來量度,故此只與被高度分解的運動動力系統有關係。[8][9]

水於生物學上的重要性[编辑]

水在生物学中的重要性主要是因为生物在維持生理機能時需要仰賴水的物理及化学性质[10]。比如,植物在運送水分時,是利用水的氫鍵互相牽引所形成如水鏈狀結構,在植物專門運送水分的導管中形成氫鍵使水分子不會受到引力作用而掉落至導管管壁,再利用蒸散作用帶動水分向上運輸。在植物水分的運輸過程中充分的解釋了水的運輸牽涉於水的物理性質。另外在生物體中,水是一種緩衝的溶液,利用解離出的氫氧基(OH-)以及質子(H+)可以將外來少量的強酸或強鹼中和,如此可確保細胞中的蛋白質結構的完整性,而對酵素而言,在酵素的結構上需要維持一定的結構才具有活性。而經由上述案例可說明在生物體內需要利用水的化學及物理性質才可維持生物體結構(細胞型狀)及機能(如酵素活性)上的穩定。

历史[编辑]

在历史上,人们曾利用水的性质来定义温度的标度。值得注意的是,热力学温标摄氏温标华氏温标都是,或曾经是用水的熔沸点来定义的。其他不常用的温标,例如Delisle温标牛顿温标列氏温标罗默温标,也是用相似的方法定义的。在现代,人们更普遍使用水的三相点作为一个标准点。[11]

1800年,英国化学家威廉·尼科尔森第一次使用电解的方法将水分解成为氢气和氧气。1805年,约瑟夫·路易·盖-吕萨克亚历山大·冯·洪堡展示了水是由两体积的氢和一体积的氧组成。

1933年,吉尔伯特·牛顿·刘易斯分离出来第一份纯的重水

聚合水是一个水的聚合物的假设,在1960年代晚期是科学界的争论话题之一。现在多数人认为聚合水并不存在。

系统命名法[编辑]

水(Water)和氧烷(oxidane)是被国际纯粹与应用化学联合会承认的正式名称。另外氧化氢这个名称也用来描述这个分子。

对水来说,最简洁的系统命名是“氧化氢”。这个命名与对相关化合物命名相似,如过氧化氢硫化氢氧化氘重水)。另外一个系统名称是氧烷(oxidane),它被用来作为对基于氧的相关取代基系统命名时的母体。[12] 但事实上,这些取代基常常有其他的推荐名称,例如,羟基(hydroxyl)被推荐来描述-OH集团,而不是“oxidanyl”。IUPAC也认为不应该使用oxane来描述这个分子,因为它已经被用来描述一个环醚,也被叫做四氢呋喃。相似的化合物还包括二噁烷三氧杂环己烷(trioxane)。

系统命名法恶作剧[编辑]

水分子的化學名稱可以称为“一氧化二氢”〔Dihydrogen Monoxide〕,或者简称“DHMO”[13]。相对了习惯用法,这种过于书面化的命名给一些企图恶搞的人带来可乘之机,特别是在对化学研究的恶作剧中,常常有人呼吁禁止此种“致死性”化学品。现实中,若使用系统命名法,水一般被叫做氧化氢,因为“一”和“二”在此处是多余的。正如我们并不会将硫化氢H2S)说成是一硫化二氢,也不会把过氧化氢(H2O2)说成是二氧化二氢。

在一些过度细心的物質安全資料表(MSDS)上,对水会列出:注意:可能会导致溺死。

对酸的系统命名法中水的名称是氢氧酸(hydroxic acid或hydroxilic acid)。同样的,对碱的系统命名法中水又被称为氢氧化氢(hydrogen hydroxide)。之所以会存在酸性和碱性两种名称,是因为水在反应中,根据与之反应的酸或碱的强度,它既可以作为酸又可以作为碱(两性)。然而,这些名字都没有被广泛应用。

参考来源[编辑]

  1. ^ 1.0 1.1 維也納標準平均海水(VSMOW)的熔點在273.1500089(10) K(0.000089(10) °C,沸點在373.1339 K(99.9839 °C)
  2. ^ Lide, D. R. (Ed.) (1990). CRC Handbook of Chemistry and Physics (70th Edn.). Boca Raton (FL):CRC Press.
  3. ^ Fine, R.A. and Millero, F.J. Compressibility of water as a function of temperature and pressure. Journal of Chemical Physics. 1973, 59 (10): 5529. doi:10.1063/1.1679903. 
  4. ^ 4.0 4.1 Elasticity, Elastic Properties. Hyperphysics.phy-astr.gsu.edu. [2013-11-02]. 
  5. ^ Choi 2005. Adsabs.harvard.edu. [2013-11-02]. 
  6. ^ Connolly, P.J, et al, 2005[失效連結]
  7. ^ Physics News Update. Aip.org. [2013-11-02]. 
  8. ^ Phys. Rev. Lett. 79, 2839 (1997): Anomalous Deep Inelastic Neutron Scattering from Liquid H_{2}O-D_{2}O: Evidence of Nuclear Quantum Entanglement. Prola.aps.org. [2013-11-02]. 
  9. ^ [1][失效連結]
  10. ^ 水與生物的重要性
  11. ^ http://web.archive.org/20040113141049/home.comcast.net/~igpl/Temperature.html
  12. ^ Leigh, G. J. et al. 1998. Principles of chemical nomenclature: a guide to IUPAC recommendations, p. 99. Blackwell Science Ltd, UK. ISBN 0-86542-685-6
  13. ^ Leigh, G. J. et al., Principles of chemical nomenclature: a guide to IUPAC recommendations, Blackwell Science Ltd, UK. 1998:  27–28, ISBN 0-86542-685-6 

参见[编辑]

外部链接[编辑]