混沌理论

维基百科,自由的百科全书
跳转至: 导航搜索
數值r = 28,σ = 10,b = 8/3的勞倫茲引子圖形。
一个双杆摆英语Double pendulum动画呈现混沌行为。 从开始略微不同的初始条件摆杆将导致一个完全不同的轨迹。双杆摆是具有混沌方案最简单的动力系统之一。
杜芬方程吸引子图列
蔡氏电路 吸引子
Rossler 吸引子
Chen 吸引子

混沌理论Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation)、周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论。在耗散系统保守系统中,混沌运动有不同表现,前者有吸引子,后者无(也称含混吸引子)。

从20世纪80年代中期到20世纪末,混沌理论迅速吸引了数学、物理、工程、生态学、经济学、气象学、情报学等诸多领域学者有关注,引发了全球混沌热。混沌,也写作浑沌(比如《庄子》)。自然科学中讲的混沌运动指确定性系统中展示的一种貌似随机的行为或性态。确定性(deterministic)是指方程不含随机项的系统,也称动力系统(dynamical system)。典型的模型有單峰映象(logistic map)迭代系统,洛伦兹微分方程系统,若斯叻吸引子杜芬方程蔡氏电路Chen 吸引子等。为浑沌理论做出重要贡献的学者有庞加莱洛伦兹上田睆亮日语上田睆亮(Y. Ueda)、费根堡姆约克李天岩斯美尔芒德勃罗郝柏林等。混沌理论向前可追溯到19世纪庞加莱等人对天体力学的研究,他提出了同宿轨道英语Homoclinic orbit异宿轨道英语Heteroclinic orbit的概念,他也被称为浑沌学之父。

混沌行为可以在许多自然系统中被观测到,例如天气和气候。[1]对于这个行为的研究,可以通过分析混沌数学模型,或者通过诸如递归图英语Recurrence plot庞加莱映射等分析技术。

定义[编辑]

混沌理论是一种兼具质性思考与量化分析的方法,用以探讨动态系统中无法用单一的数据关系,而必须用整体,连续的数据关系才能加以解释及预测之行为。

“一切事物的原始状态,都是一堆看似毫不关联的碎片,但是这种混沌状态结束后,这些无机的碎片会有机地汇集成一个整体。”

混沌一词原指发现宇宙混乱状态的描述,古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家熟知的地心引力杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。

近半世纪以来,科学家发现许多自然现象即使可以化为单纯的数学公式,但是其行径却无法加以预测。如气象学家愛德華·諾頓·勞侖次Edward Lorenz)发现简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的“蝴蝶效应”。60年代,美国数学家史蒂芬·斯梅爾Stephen Smale)发现某些物体的行径经过某种规则性变化之后,随后的发展并无一定的轨迹可循,呈现失序的混沌状态。

背景[编辑]

1963年美国气象学家愛德華·勞侖次提出混沌理论(Chaos),非线性系统具有的多样性和多尺度性。混沌理论解释了決定系统可能产生隨機结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象航空航天等领域的研究裡有重大的作用。

應用[编辑]

混沌理論在許多科學學科中得到廣泛應用,包括:數學、生物學、信息技術、經濟學、工程學、金融學、哲學、物理學、政治學、人口學、心理學和機器人學。

多種系統的渾沌狀態在實驗室中得到觀察,包括電路、激光、流體的動態,以及機械和電磁裝置。在自然中進行的有對天氣、衛星運動、天體磁場、生態學中的種群增長、神經元中的動作電位和分子振動的觀察。

渾沌理論最成功的應用之一在于生態學中的雷克動態綜合模型,在其中顯示了受密度制約之下的種群增長如何引致混沌狀態。

混沌控制[编辑]

混沌控制狄透(William Ditto)、賈芬卡(Alan Garfinkel)、約克(Jim Yorke),將此想法化為實用技術,用微小的變化開始,造成希望所想的巨大改變。

混沌動力學[编辑]

混沌系統有三種性質:

  1. 受初始狀態影響的敏感性,初始条件非常微小的变动也可以导致最终状态的巨大差别。
  2. 具有拓撲混合性;不严格地来说,就是系统会将初始空间的拓扑性质彻底打乱,使得任何初始状态变换到其他任何位置。
  3. 周期軌道稠密,即在任何初始值附近都可以找到具有周期轨道的值。

参见[编辑]

Wikibooks-logo.svg
您可以在維基教科書中查找此百科条目的相關電子教程:

参考文献[编辑]

引用[编辑]

  1. ^ Ivancevic, Vladimir G.; Tijana T. Ivancevic. Complex nonlinearity: chaos, phase transitions, topology change, and path integrals. Springer. 2008. ISBN 978-3-540-79356-4. 

刊物文章[编辑]

  • 郝柏林:《分岔、混沌、奇怪吸引子、湍流及其它》,《物理学进展》,1983, 3(01).
  • 朱照宣:《非线性动力学中的浑沌》,《力学进展》,1984, (02).

书籍[编辑]

  • 苗东升、刘华杰:《浑沌学纵横论》,北京:中国人民大学出版社,1992,1993.
  • 刘华杰:《浑沌语义与哲学》,长沙:湖南教育出版社,1998.

外部鏈接[编辑]