# 溫伯格角

## 温伯格角的由来与定义

$\tan \theta_W =\frac{g'}{g}$

$Z_\mu=({g^2}+{g'^2})^{-1/2}(g A_\mu^3+g' B_\mu)$
$A_\mu=({g^2}+{g'^2})^{-1/2}(-g' A_\mu^3+g B_\mu)$.

$\begin{pmatrix} A \\ Z \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B \\ W \end{pmatrix}$

$\cos\theta_W=\frac{m_W}{m_Z}$

## 温伯格角的测量值

sin2θW = 0.2397 ± 0.0013

## 參考文獻

1. ^ S.L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics. 1961, 22 (4): 579–588. Bibcode:1961NucPh..22..579G. doi:10.1016/0029-5582(61)90469-2.
2. ^ 2.0 2.1 S. Weinberg. A Model of Leptons. Physical Review Letters. 1967, 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264.
3. ^ A. SalamN. Svartholm. . Elementary Particle Physics: Relativistic Groups and Analyticity, Eighth Nobel Symposium. Stockholm: Almquvist and Wiksell. 1968: pp. 367.
4. ^ L. B. Okun. Leptons and Quarks. North-Holland Physics Publishing. 1982: 214. ISBN 0-444-86924-7.