本页使用了标题或全文手工转换

热力学第零定律

维基百科,自由的百科全书
跳转至: 导航搜索

熱力學第零定律,又称热平衡定律,是一個關於互相接觸的物體在熱平衡時的描述,以及為溫度提供理論基礎。最常用的定律表述是:

若兩個熱力學系統均與第三個系統處於熱平衡狀態,此兩個系統也必互相處於熱平衡。

換句話說,第零定律是指:在一個數學二元關係之中,熱平衡是遞移的。

歷史[编辑]

第零定律比起其他任何定律更為基本,但直到二十世紀三十年代前一直都未有察覺到有需要把這種現象以定律的形式表達。第零定律是由英國物理學家拉爾夫·福勒於1930年正式提出,比热力学第一定律热力学第二定律晚了80餘年,但是第零定律是后面几个定律的基础,所以叫做热力学第零定律。

概要[编辑]

一個熱平衡系統的宏觀物理性質(壓强溫度體積等)都不會隨時間而改變。一杯放在餐桌上的熱咖啡,由於咖啡正在冷卻,所以這杯咖啡與外界環境並非處於平衡狀態。當咖啡不再降溫時,它的溫度就相當於室溫,並且與外界環境處於平衡狀態。

兩個互相處於平衡狀態的系統會滿足以下條件:

  1. 兩者各自處於平衡狀態;
  2. 兩者在可以交換熱量的情況下,仍然保持平衡狀態。

進而推廣之,如果能夠肯定兩個系統在可以交換熱量的情況下物理質性也不會發生變化時,即使不容許兩個系統交換熱量,也可以肯定互為平衡狀態。

因此,熱平衡是熱力學系統之間的一種關係。數學上,第零定律表示這是一種等價關係。(技術上,需要同時包括系統自己亦都處於熱平衡。)

多系統間之平衡[编辑]

一個簡單例子可以說明為甚麼需要到第零定律。如前所述,當兩個系統間有小量廣延量交換時(如微觀波動)而兩者的總能量不變時(能量減少不能逆轉),此兩個系統即處於平衡。

簡單起見,N 個系統與宇宙的其他部分絕應隔離,每一個系統的體積與組成都保持恒定,而各個系統之間都只能交換熱量()。此例子的結果可直接延伸至體積或積量的交換。

熱力學第一與第二定律的結合把總能量波動 \delta U 與第 i 個系統的溫度 T_i 及熵的波動 \delta S_i 聯繫成:

\delta U=\sum_i^NT_i\delta S_i

與宇宙其他部分絕熱隔離,N 個系統熵的總和必須為零。

\sum_i^N\delta S_i=0

換句話說,熵只能在 N 個系統之間交換。這個限制可以用來重寫總能量波動的表達式成:

\delta U=\sum_{i}^N(T_i-T_j)\delta S_i

T_jN 個系統中任何一個系統 j 的溫度。最後到達平衡時,總能量波動必須為零,因此:

\sum_{i}^N(T_i-T_j)\delta S_i=0

這條方程式可被設想成反對稱矩陣 T_i-T_j 與熵波動向量之乘積為零。若要令一個非零解存在,則:

\delta S_i\ne 0

無論是那一個 j 的選擇,由 T_i-T_j 組成之矩陣的行列式值必定歸零。

但是,根據雅可比定理,一個 N×N 反對稱矩陣若N 為奇數時,則其行列式值必為零;而若 N 為偶數時,則每一項 T_i-T_j 必須為零以令行列式值為零,亦即各個系統處於平衡狀態 T_i=T_j。此結果顯示,奇數數目的系統必定處於平衡狀態,而各系統的溫度和熵波動則可以忽略不計;熵波動存在時,只有偶數數目的系統才須要各系統的溫度相等以達致平衡狀態。

熱力學第零定律解決了此奇偶矛盾。考慮 N 個系統中的任何三個互為平衡的系統,其中一個就系統可以按照第零定律而被忽略。因此,一個奇數數數的系統就可以約簡成一個偶數數目的系統。此推導使 T_i=T_j 為平衡的必須條例。

相同結果,可以應用到任何廣延量中的波動如體積(相同壓强)、或質量(相同化勢)。因而,第零定律的所涉及的就不單只是溫度罷了。

總的來說,第零定律打破了第一定律和第二定律內的某種反對稱性。

第零定律與溫度[编辑]

第零定律經常被認為可於建立一個溫度函數;更隨便的說法是可以製造溫度計。而這個問題是其中一個熱力學和統計力學哲學的題目。

在熱力學變量的函數空間之中,恒溫的部分會成為一塊面並會為附近的面提供自然秩序。之後,該面會簡單建立一個可以提供連續狀態順序的總體溫度函數。該恒溫面的維度是熱力學變量的總數減一(例如對於有三個熱力學變量 PVn理想氣體,其恒溫面是塊二維面)。按此定義的溫度實際上未必如攝氏溫度尺般,而是一個函數。

以理想氣體為例,若兩團氣體是處於熱平衡,則:

\frac{P_1 V_1}{N_1} = \frac{P_2 V_2}{N_2}

  • P_i 是第 i 個系統的壓力
  • V_i 是第 i 個系統的體積
  • N_i 是第 i 個系統的數量(摩爾數或者原子數目)

PV/N = const 定義了所有相同溫度的面,一個常見方法來標籤這些面是令 PV/N = RTR 是一個常數而溫度 T 可以由此定義。經定義後,這些系統可用作溫度計來較準其他系統。

参阅[编辑]