狄拉克矩陣

维基百科,自由的百科全书
跳转至: 导航搜索

理論物理學中,狄拉克矩陣 \{ \gamma^0, \gamma^1, \gamma^2, \gamma^3 \} ,又稱γ矩陣,是狄拉克方程中所引入的四个矩阵,它们是泡利矩阵的推广,满足反对易关系

\displaystyle\{ \gamma^\mu, \gamma^\nu \} = \gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2 \eta^{\mu \nu} I_4

狄拉克表象四个矩阵:

 \gamma^0 = \begin{pmatrix} 
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\ 
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \end{pmatrix},\quad
\gamma^1 = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \end{pmatrix}
\gamma^2 = \begin{pmatrix}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0 \end{pmatrix},\quad
\gamma^3 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \end{pmatrix}.

參考資料[编辑]