生物集群灭绝

维基百科,自由的百科全书
跳转至: 导航搜索
Extinction intensity.svg 寒武紀 奧陶紀 志留紀 泥盆紀 石炭紀 二疊紀 三疊紀 侏羅紀 白堊紀 古近紀 新近紀
單位:百萬年
Extinction intensity.svg 寒武紀 奧陶紀 志留紀 泥盆紀 石炭紀 二疊紀 三疊紀 侏羅紀 白堊紀 古近紀 新近紀
本圖僅呈現地質年代各期的海洋生物滅絕比例,包含規模最大的五次滅絕事件。藍色部份代表大致的滅絕比例,以該時期與下一時期的化石紀錄比較計算。

生物集群灭绝是指在一个相对短暂的地质时段中,在一个以上并且较大的地理区域范围内,生物数量和种类急剧下降的事件。这个概念主要是指宏观生物,因为微生物的多样性和数量很难推测和测定。据科学家推测,自地球诞生以来,曾经出现过的生物已灭绝了超过98%。[1]每次灭绝事件所灭绝生物的比率都有较大的差别。

生物集群滅绝要滿足四個條件:

  1. 量值:达到具有实质意义的绝灭量值。
  2. 广度:具有全球范围内的广度。
  3. 幅度:涉及广泛的不同分类单元。
  4. 时续:限于相对短暂的地质时隔。

造成生物集群灭绝的可能原因很多,如地外星体撞击地球火山活动、气候变冷或变暖、海进或海退(海平面上升或下降)和缺氧等都曾有學者提出,但目前仍未有完全的定論。每次大的灭绝事件,都能在相对短时期内造成80%-90%以上的物种灭绝。但是,少数生命力或逃逸能力强的物种能够忍受灾变造成的极端恶劣的环境,或逃离灾区至异地避难而留存下来。同时,灾变引起的环境变化也给新物种的诞生创造了条件和机遇。大灭绝期间幸存的和新生的物种在灭绝事件后开始复苏和发展,并进而开创生物演化的新篇章,因此每次全球性的灭绝事件后,都伴随着生物的复苏和发展。

科学家推测在太古宙元古宙应该也有大灭绝事件,但那时以菌藻为主,缺乏化石记录。在显生宙,根据化石记录,地球上曾发生过至少20次明显的生物灭绝事件,其中有5次大的集群灭绝事件,即奥陶纪末期、泥盆纪末期、二叠纪末期、三叠纪末期和白垩纪末期的生物大规模绝灭。白堊紀-第三紀滅絕事件恐龙的灭绝而受到广泛关注,不过二叠纪生物绝灭事件却是规模最大、涉及生物类群最多、影响最为深远的一次。

五次大滅絕事件[编辑]

下列是五大生物集群滅絕事件,最早由大衛·駱普英语David M. Raup傑克·塞科斯基英语Jack Sepkoski1982年發佈的論文所认定。[2][3]

  1. 奧陶紀-志留紀滅絕事件:发生在奥陶纪晚期或奥陶纪与志留纪过渡时期,4.50亿年前至4.40亿年前,约27%的与57%的灭种。[4]从灭种的生物分类的属的数量,被评为五次大灭绝事件的第三位。直接原因是冈瓦纳大陆进入南极地区,影响全球环流变化,导致全球冷化进入安第斯-撒哈拉冰河时期,海面大幅度下降。
  2. 泥盆紀後期滅絕事件英语Late Devonian extinction:3.75亿年前至3.60亿年前,接近泥盆纪-石炭纪过渡时期。这次主要是海洋生物的灭绝,陆地生物受影响不显著。约19%的科、50%的属灭绝。[4]这次大灭绝事件持续了近2000万年,期间有多次灭绝高峰期。造礁生物消失,竹节石类、腕足动物的3个目、四射珊瑚10多个科灭亡,称凯勒瓦瑟尔事件,也称弗朗斯-法门事件。由于灭绝事件持续时间很长,其根源很难辨识。可能的生物学原因是在此前的泥盆纪陆生植物大量繁育,导致地球大气中氧含量的增加、二氧化碳的大幅减少,地球进入卡鲁冰河时期所致。陆生植物进化出发达的根系深入地表土之下数米,加速了陆地岩石土壤的风化,大量铁等元素释放进入地表水,造成了水系的富营养化大暴发,导致了海底缺氧事件。海洋表层的繁盛的有机物的沉降,使得全球碳循环中大气层的二氧化碳大量进入海底沉积层,也加强了地球冷化。泥盆纪也是陆地上生成大煤田的时期,这也加剧了二氧化碳固化入岩石圈。
  3. 二疊紀-三疊紀滅絕事件:发生在2.51亿年前的二叠纪-三叠纪过渡时期。这是已知的地质历史上最大规模的物种灭绝事件。许多动物门类整个目或亚目在此次灭绝事件中全部灭亡。曾普遍分布的舌羊齿植物群几乎全部绝灭。早古生代繁盛的三叶虫全部消失。蜓类原有40多个属,该世结束时完全消失。菊石有10个科绝灭;腕足类之前有140个属,在该事件后所剩无几。总共约57%的科、83%的属[4](53%的海洋生物的科、84%的海洋生物的属、大约96%的海洋生物的种),估计有70%的陆地生物包括昆虫的物种灭绝了。[5]对于植物的影响较不明确,但新植物类群在此次灭绝后开始占优势。[6]全世界几乎没有三叠纪早期形成的煤田。这次大灭绝事件的可能成因包括西伯利亚大规模玄武岩喷发造成的附近浅海区可燃冰融化大量释放温室气体甲烷盘古大陆形成后改变了地球环流与洋流系统等等。
  4. 三疊紀-侏羅紀滅絕事件:2.0亿年前的三叠纪-侏罗纪过渡时期。约23%的科与48%的属的生物灭绝。[4]其原因尚无定论。
  5. 白堊紀-第三紀滅絕事件(缩写为K-T灭绝或K-T事件):6千5百万年前[7],约17%的科、50%的属[4]、75%的物种灭绝。这次灭绝事件被评为五次大灭绝事件的第二位,仅次于二叠纪-三叠纪灭绝事件。[8]其成因一般认为是墨西哥尤卡坦半岛的陨石撞击。(参见希克苏鲁伯陨石坑

第六次大滅絕[编辑]

第六次大滅絕,又稱作全新世滅絕事件,是於現今的全新世所發生廣泛及持續的滅絕生物集群滅絕事件。[9]涉及的滅絕集群包括了植物動物,如哺乳動物鳥類兩棲類爬行動物節肢動物,大部份滅絕都是在雨林內發生。於1500年至2006年,世界自然保護聯盟就列出了784個已滅絕物種[10]不過,有很多實際滅絕的物種都沒有紀錄,一些科學家估計於20世紀,就已有2-200萬個物種實際滅絕。根據物種面積曲線估計,每年就有達14萬個物種滅絕。[11]

現今物種滅絕的速度估計是地球演化年代平均滅絕速度的100倍。[12]巨型動物群的滅絕一直持續至21世紀。現代的滅絕事件基本上是人類造成的直接影響。

廣義來說,全新世滅絕事件亦可包括發生在更新世-全新世之間的第四紀滅絕事件(或稱冰河時期滅絕事件)。自一萬年前,人類發展及散佈開始後造成巨型動物群消失。是次滅絕事件並非源自氣候的轉變或人類人口過多。不過全新世滅絕事件則延伸至現今的21世紀。

其它较大规模的灭绝事件[编辑]

上述五大灭绝事件以及第六次大滅絕事件之外,还有以下规模稍小的灭绝事件[13]

地质时期 地质时期起始时间 生物灭绝事件 灭绝发生时间 原因
更新世 258.8万年前 第四纪灭绝事件 64万、7.4万,以及1.3万年前 新仙女木事件?(1.3万年前)印尼蘇門答臘島托巴火山爆發?(7.4万年前) 黃石火山爆發英语Lava Creek Tuff?(64万年前)[14] 人类過度捕殺? 气候改变
上新世 530万年前 上新世-更新世灭绝事件英语Pliocene–Pleistocene boundary marine extinction 200万年前 天蝎-半人马星协OB星协)超新星爆发[15]
中新世 2300万年前 中新世灭绝事件英语Middle Miocene disruption 1450万年前
古近纪 6500万年前 始新世-渐新世灭绝事件英语Eocene–Oligocene extinction event 3390万年前 火山爆发?切萨皮克湾波皮盖陨石坑小行星影响?
白垩纪 1.45亿年前 阿普第阶灭绝事件 1.17亿年前 印度西孟加拉邦Rajmahal Traps 火山英语Rajmahal Traps爆發?
侏罗纪末期灭绝事件英语End-Jurassic extinction 1.455亿年前 大塔穆火山爆發?
侏罗纪 2.013亿年前 托阿尔阶灭绝事件 1.83亿年前 卡鲁-费拉英语Karoo-Ferrar火山爆發?
三叠纪 2.522亿年前 喀尼阶灭绝事件英语Carnian Pluvial Event 2.32亿年前 兰格利亚溢流玄武岩英语Flood basalt事件?
二叠纪 2.989亿年前 奥尔森阶灭绝事件英语Olson's Extinction 2.7亿年前
石炭纪 3.589亿年前 石炭纪雨林崩溃事件英语Carboniferous Rainforest Collapse 3.18亿年前 气候变化西澳大利亞兀里隕石坑英语Woodleigh crater
志留纪末期灭绝事件英语End-Silurian extinction event 4.16亿年前
劳阶灭绝事件英语Lau event 4.2亿年前
穆尔德阶灭绝事件英语Mulde event 4.24亿年前 全球海平面下降?
志留纪 4.434亿年前 艾尔维肯纪灭绝事件英语Ireviken event 4.28亿年前 深海缺氧?
寒武纪-奥陶纪灭绝事件 4.88亿年前 冰川期?海洋含氧量降低英语Anoxic event
德雷斯巴奇阶灭绝事件英语Dresbachian extinction 5.02亿年前
寒武纪 5.42亿年前 寒武纪末期灭绝事件英语End-Botomian_mass extinction 5.17亿年前
埃迪卡拉纪 6.2亿年前 埃迪卡拉纪末期灭绝事件 5.42亿年前 海洋缺氧? 成冰纪出现的雪球地球事件?

在演化上的重要性[编辑]

生物灭绝事件时常加快地球生命的演化,因为灭绝事件时常使原本生态环境中占優勢的生物急剧衰落甚至绝灭,从而为新的生物的发展提供了更大的空间。在一个生态系统中,新的優勢种往往因此取代舊優勢物种,而不是由于性状更优。[16][17]

例如,哺乳形類英语mammaliformes哺乳動物恐龍占優勢的中生代時期即已存在,但是無法與恐龍競爭大型脊椎動物生態區位白堊紀-第三紀滅絕事件消滅了非鳥類恐龍,使哺乳動物能夠進入大型脊椎動物的生態區位。恐龍亦是大滅絕的受益者,因為三疊紀-侏羅紀滅絕事件消滅其最主要的競爭者鑲嵌踝類主龍

另一種觀點是提升假說英语Escalation hypothesis,它預測在有較多物種競爭之生態區位的生物較不易在大滅絕中倖存。這是因為在大滅絕時的劇烈變化,將使原本一些能夠讓該物種維持一定穩定數量的性狀,在競爭物種數量急遽減少時反而變成負擔,進而加速其滅亡。

再者,許多在大滅絕中倖存的物種並未恢復原先的數量與多樣性,甚至有數量長期下降的趨勢(有時被稱作"越過死亡線的物種英语Dead Clades Walking"[18])。因此, 若以"哪些物種倖存或滅亡"的方式來分析某次大滅絕的話,往往會失於偏頗。

然而,達爾文卻堅持,物種間的競爭,例如對食物或生存空間的競爭,在演化上相較於外在環境的變化來得重要。他在《物種源始》一書中表示,“Species are produced and exterminated by slowly acting causes...and the most import of all causes of organic change is one which is almost independent of altered...physical conditions, namely the mutual relation of organism to organism-the improvement of one organism entailing the improvement or extermination of others”。[19]

週期性[编辑]

許多學者認為,滅絕事件的發生具有週期性,大約是每2600萬至3000萬年之間[20],或者大約每6200萬年就有一些波動變化。[21]對於此種週期性有許多不同的解釋,例如太陽可能存在著一顆未知的伴星涅墨西斯星[22][23]太陽系在垂直銀河系盤面方向的震盪運行,或者穿越銀河系的旋臂[24]

然而,其他學者認為,海中的滅絕事件並未符合週期性的假設,或者是該生態系逐漸達到了一個特定的臨界點,使大滅絕的發生變得不可避免。[25]此外,週期性假說當中許多假設的相關性受到質疑。[26][27]但支持者則宣稱各種紀錄中皆有強烈證據顯示大滅絕的發生具有週期性[28],且非生物性的地質化學資料亦有與其一致的週期性。[29]

参见[编辑]

参考资料[编辑]

  1. ^ Fichter, George S. Endangered animals. USA: Golden Books Publishing Company. 1995: 5. ISBN 1-58238-138-0. 
  2. ^ Raup, D. & Sepkoski, J. Mass extinctions in the marine fossil record. Science. 1982, 215: 1501–1503. doi:10.1126/science.215.4539.1501. PMID 17788674. 
  3. ^ Morell, V.及Lanting, F.,1999年月. "The Sixth Extintion," 國家地理雜誌
  4. ^ 4.0 4.1 4.2 4.3 4.4 extinction. Math.ucr.edu. [2008-11-09]. 
  5. ^ Labandeira CC, Sepkoski JJ. Insect diversity in the fossil record. Science. 1993, 261 (5119): 310–5. Bibcode:1993Sci...261..310L. doi:10.1126/science.11536548. PMID 11536548. 
  6. ^ McElwain, J.C.; Punyasena, S. W. Mass extinction events and the plant fossil record. Trends in Ecology & Evolution. 2007, 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID 17919771. 
  7. ^ Macleod, N.; Rawson, P. F.; Forey, P. L.; F. T. Banner, M. K. Boudagher-Fadel, P. R. Bown, J. A. Burnett, P. Chambers, S. Culver, S. E. Evans, C. Jeffery, M. A. Kaminski, A. R. Lord, A. C. Milner, A. R. Milner, N. Morris, E. Owen, B. R. Rosen, A. B. Smith, P. D. Taylor, E. Urquhart and J. R. Young. The Cretaceous-Tertiary biotic transition. Journal of the Geological Society. 1997.April, 154 (2): 265–292. doi:10.1144/gsjgs.154.2.0265. 
  8. ^ Raup, D.; Sepkoski Jr, J. Mass extinctions in the marine fossil record. Science. 1982, 215 (4539): 1501–1503. Bibcode:1982Sci...215.1501R. doi:10.1126/science.215.4539.1501. PMID 17788674. 
  9. ^ 生物的演化與絕滅 十、第六次大滅絕:生物圈面臨的危機. 
  10. ^ 2006 version of IUCN redlist. 
  11. ^ S.L. Pimm, G.J. Russell, J.L. Gittleman and T.M. Brooks. The Future of Biodiversity. Science. 1995, 269: 347–50. 
  12. ^ J.H.Lawton and R.M.May. Extinction rates. Oxford, UK: Oxford University Press. 
  13. ^ Partial list from Image:Extinction Intensity.png
  14. ^ http://www.academia.edu/925184/Extinction_in_the_Late_Quaternary_Period
  15. ^ Benitez, Narciso; Maíz-Apellániz, Jesús; Canelles, Matilde. Evidence for Nearby Supernova Explosions. Phys. Rev. Lett. 2002, 88 (8): 081101. arXiv:astro-ph/0201018. Bibcode:2002PhRvL..88h1101B. doi:10.1103/PhysRevLett.88.081101. 
  16. ^ Benton, M.J. 6. Reptiles Of The Triassic. Vertebrate Palaeontology. Blackwell. 2004. ISBN 0-04-566002-6. 
  17. ^ Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences. 1999, 27: 463–493. Bibcode:1999AREPS..27..463V. doi:10.1146/annurev.earth.27.1.463. 
  18. ^ Jablonski, D. Survival without recovery after mass extinctions. PNAS. 2002, 99 (12): 8139–8144. Bibcode:2002PNAS...99.8139J. doi:10.1073/pnas.102163299. PMC 123034. PMID 12060760. 
  19. ^ Hallam, A., & Wignall, P. B. (2002). Mass Extinctions and Their Aftermath. New York: Oxford University Press Inc.
  20. ^ Raup, DM; Sepkoski Jr, JJ. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences of the United States of America. 1984, 81 (3): 801–5. Bibcode:1984PNAS...81..801R. doi:10.1073/pnas.81.3.801. PMC 344925. PMID 6583680.  编辑
  21. ^ Different cycle lengths have been proposed; e.g. by Rohde, R.; Muller, R. Cycles in fossil diversity. Nature. 2005, 434 (7030): 208–210. Bibcode:2005Natur.434..208R. doi:10.1038/nature03339. PMID 15758998.  编辑
  22. ^ R. A. Muller. Nemesis. Muller.lbl.gov. [2007-05-19]. 
  23. ^ Adrian L. Melott and Richard K. Bambach. Nemesis Reconsidered. Monthly Notices of the Royal Astronomical Society. 2010-07-02 [2010-07-02]. 
  24. ^ Gillman, M.; Erenler, H. The galactic cycle of extinction. International Journal of Astrobiology. 2008, 7. Bibcode:2008IJAsB...7...17G. doi:10.1017/S1473550408004047.  编辑
  25. ^ Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105 (Supplement 1): 11536–11542. Bibcode:2008PNAS..10511536A. doi:10.1073/pnas.0802597105. PMC 2556405. PMID 18695240.  编辑
  26. ^ Bailer-Jones, C. A. L. The evidence for and against astronomical impacts on climate change and mass extinctions: a review. International Journal of Astrobiology. 2009, 8 (3): 213–219. arXiv:0905.3919. Bibcode:2009IJAsB...8..213B. doi:10.1017/S147355040999005X.  编辑
  27. ^ Overholt, A. C.; Melott, A. L.; Pohl, M. Testing the link between terrestrial climate change and galactic spiral arm transit. The Astrophysical Journal. 2009, 705 (2): L101–L103. arXiv:0906.2777. Bibcode:2009ApJ...705L.101O. doi:10.1088/0004-637X/705/2/L101.  编辑
  28. ^ Melott, A.L.; Bambach, R.K. A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology. 2011, 37: 92–112. doi:10.1666/09054.1. 
  29. ^ Melott, A.L. et al.; Bambach, Richard K.; Petersen, Kenni D.; McArthur, John M. A ~60 Myr periodicity is common to marine-87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect?. Journal of Geology. 2012, 120 (2): 217–226. arXiv:1206.1804. Bibcode:2012JG....120..217M. doi:10.1086/663877.