白矮星

维基百科,自由的百科全书
跳转至: 导航搜索
哈柏太空望遠鏡拍攝的天狼星聯星系統,在左下方可以清楚的看見天狼伴星(天狼 B)。

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能[1]。在太陽附近的區域內已知的恆星中大約有6%是白矮星[2]。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素愛德華·皮克林威廉·佛萊明等人注意到[3], p. 1白矮星的名字是威廉·魯伊登在1922年取的[4]

白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類[5], §1.中低質量的恆星在渡過生命期的主序星階段,結束以融合反應之後,將在核心進行氦融合,將燃燒成3氦過程,並膨脹成為一顆紅巨星。如果紅巨星沒有足夠的質量產生能夠讓碳燃燒的更高溫度,碳和氧就會在核心堆積起來。在散發出外面數層的氣體成為行星狀星雲之後,留下來的只有核心的部份,這個殘骸最終將成為白矮星[6]。因此,白矮星通常都由碳和氧組成。但也有可能核心的溫度可以達到燃燒碳卻仍不足以燃燒的高溫,這時就能形成核心由氧、氖和鎂組成的白矮星[7]。同樣的,有些由 組成的白矮星是由聯星的質量損失造成的[8][9]

白矮星的內部不再有物質進行核融合反應,因此不再有能量產生,也不再由核融合的熱來抵抗重力崩潰;它是由極端高密度的物質產生的電子簡併壓力來支撐。物理學上,對一顆沒有自轉的白矮星,電子簡併壓力能夠支撐的最大質量是1.4倍太陽質量,也就是錢德拉塞卡極限。許多碳氧白矮星的質量都接近這個極限的質量,通常經由伴星的質量傳遞,可能經由所知道的碳引爆過程爆炸成為一顆Ia超新星[6][1]

白矮星形成時的溫度非常高,目前發現最高溫的白矮星是行星狀星雲NGC 2440中心的HD62166,表面溫度約200000K[10],但是因為沒有能量的來源,因此將會逐漸釋放它的熱量並解逐漸變冷,這意味著它的輻射會從最初的高色溫隨著時間逐漸減小並且轉變成紅色。經過漫長的時間,白矮星的溫度將冷卻到光度不再能被看見,成為冷的黑矮星[6]。但是,現在的宇宙仍然太年輕 (大約137億歲)[11],即使是最年老的白矮星依然輻射出數千度K的溫度,還不可能有黑矮星的存在 [5][1]

發現[编辑]

第一顆被發現的白矮星是三合星波江座 40,它的成員是主序星波江座 40A,和在一段距離外組成聯星的白矮星波江座 40B和主序星的波江座 40C。波江座 40B和波江座 40C這一對聯星是威廉·赫歇爾在1783年1月31日發現的[12], p. 73,它在1825年再度被Friedrich Georg Wilhelm Struve觀測,1851年被Otto Wilhelm von Struve觀測[13][14]。在1910年,亨利·諾瑞斯·羅素愛德華·皮克林威廉·佛萊明發現他有一顆黯淡不起眼的伴星,而波江座 40B的光譜類型是A型或是白色[4]。在1939年,羅素回顧此一發現[3], p. 1

我前往拜訪我的朋友,也是慷慨的恩人艾德華·C·皮克林教授。他一如往常的慈祥,自願檢視和討論我和Hinks在劍橋為觀察恆星視差所做的所有恆星光譜—還包括相互比較。這一段定期的工作證明非常有效(fruitful)—發現了許多絕對星等很黯淡的M型光譜恆星。在這個主題的交談中 (我重拉回這個主題),我請教皮克林一些不在我的目錄中的暗星,特別是波江座 40B。很特別的,他在作充分的說明之前先寄發了摘要到觀測所的辦公室 (我想是來自佛蘭德夫人的),說明它的光譜是A型。我對這已經有充分的了解,即使在過去亦然,但立即意識到有極端矛盾 (不一致) 的事情出現在其中,那就是表面亮度和密度的可能數值。我一定顯示了我不僅困惑,而且很沮喪,在這個完美的恆星規律上似乎出了個例外。但是皮克林微笑的對著我,並且說:這只是個例外,他可以引導我們的知識更近一步的增長,於是我們踏入了白矮星的研究領域!

對波江座 40B的光譜正式的描述是在1914年由沃爾特·亞當斯提出的[15]

天狼星的伴星,天狼星 B,隨後也被發現。在19世紀,對有些恆星已經能夠精確的測量出它們在位置上的微小變化。貝塞爾使用這些精確的測量確定天狼星 (大犬座 α)、南河三 (小犬座 α)的位置都有些變動,在1844年他預言這兩顆恆星都有看不見的伴星[16]


如果我們認為天狼星南河三是雙星,它們變動位置的行為就不會使我們驚訝了;我們應該知道這是必須的認知,並且是由觀測所獲知的唯一資訊。但光度沒有提供質量的性質,有哪麼多看得見的星星,並不能證明沒有許多看不見的星星。

貝塞爾粗略的估計出天狼星伴星的軌道週期是半個世紀[16] C. H. F. 彼得在1851年也計算出一個週期[17]。直到1862年1月31日,格雷厄姆·克拉克才看見這顆緊挨著天狼星的伴星,然後就證實了這顆預期中存在的伴星[17]沃爾特·亞當斯在1915年宣布天狼星 B的光譜和天狼星相似[18]

在1917年,范·马南發現了一顆孤獨的白矮星,現在被稱為范马南星[19]。這三顆白矮星,最早發現的,是所謂的經典的白矮星[3], p. 2。終於,有許多的黯淡的白色恆星被發現,它們都有高自行,表示都是緊鄰地球的低光度天體,因此都是白矮星。 。威廉·魯伊登在1922年要說明這種天體時,似乎是第一個使用白矮星這個名詞的人[4][20][21][22][23],稍後這個名詞經亚瑟·爱丁顿而通俗化了[24][4]。儘管有各種的懷疑,第一顆非經典的白矮星大約直到1930年代才被辨認出來。在1939年已經發現了18顆白矮星[3], p. 3,在1940年代,魯伊登和其他人繼續研究白矮星, 到1950年發現已經超過一百顆的白矮星[25],到了1999年,這個數目已經超過2,000顆[26]之後的史隆數位巡天發現的白矮星就超過9,000顆,而絕大多數都是新發現的[27]

組成和結構[编辑]

雖然在已知的白矮星中,質量估計最低是0.17 [28],最高是1.33[29]太陽質量,但質量分布明顯的在0.6太陽質量處是個高峰,大多數的質量都在0.5至0.7太陽質量之間[29]。被觀測過的白矮星半徑估計在0.008和0.02太陽半徑之間[30]。相較於地球的半徑是太陽的0.009,白矮星將相當於太陽的質量封裝在只有太陽的百萬分之一,與地球相似的體積內,因此白矮星的平均密度大約是太陽密度的百萬倍,幾乎是106公克 (1噸) / 立方公分[1]。白矮星是密度最大的已知天體种类之一,只有其他的緻密天體,像是中子星黑洞和假設可能存在的夸克星能超越它[31]

白矮星在被發現之後就被確認是密度極端高的天體。如果一顆在聯星系統的恆星,像是天狼星 B和波江座40B,是可以從聯星的軌道估計出它的質量的。在1910年對天狼星 B這樣做過[32],得到的質量是0.94太陽質量 ( 現代的估計是1太陽質量)[33]。由於高溫恆星的輻射量大於低溫恆星,恆星的表面亮度可以從有效表面溫度,也可以從光譜來估計。如果知道恆星的距離,它的整體光度也能估計出來。從這兩種圖表可以比較出恆星的半徑,由推理排出來的順序讓當時的天文學家非常困惑,因為天狼星 B和波江座 40B必須有非常高的密度。例如,當恩斯特·奧皮克(Ernst Öpik)在1916年估計一些聯星的密度時,他就發現波江座 40B的密度超過太陽25,000倍以上,使他認為是"不可能的" [34]。如同亞瑟·史坦利·愛丁頓在1927年之後寫道[24], p. 50

我們透過星光之中的訊息來學習與了解星星。當我們解讀了天狼星伴星所傳來的光訊息之後,我們得到以下的解譯:"組成我的材料的密度,是比你所見過任何材料的密度都要高3000倍;光是一塊小到可以放進火柴盒裡的這種材料,它的重量就可以超過一噸。"看到此訊息我們能做何回應?在1914年,我們通常只會有一種回應-"閉嘴,別盡說些荒唐話。"

正如愛丁頓于1924年指出的那样,根据广义相对论[35],天狼B的光线将发生引力红移。1925年,亚当斯的观测证实了引力红移存在[36]

质量-半径关系和质量极限[编辑]

根据能量最小化原理,能简单的推导出关于白矮星质量和半径之间的粗略关系。我们可以把白矮星的初始能量近似的设定为与太阳的重力势能动能相当。

我们把1单位质量(就是说重力势能公式中的m=1)的白矮星的重力势能计为 Eg , 根据势能公式, Eg=− GM/R, 其中G万有引力常数, M 是白矮星质量, R 是其半径。同样的,1单位质量的动能计为Ek ,主要决定于其中的电子动能,所以它近似于 N p2/2m, 其中 p 是电子平均动量,m 是电子的质量, N 是单位质量内的电子数。 电子是简并物质, 根据测不准原理,我们可用电子动量的测不准量Δp 近似的表示p 。也就是说,ΔpΔx 近似的等于简化普朗克常数ħ 。其中的Δx 近似于电子间平均距离, 大致等于n−1/3,也就是单位电子密度的立方根,其中的 n 是1单位体积的电子数。基于白矮星的电子总数为 N×M ,而它们的总体积正比于R3, 因此n 近似于 N×M/R3.[37] 根据动能的微分公式 Ek ,我们有:

E_k \approx \frac{N (\Delta p)^2}{2m} \approx \frac{N \hbar^2 n^{2/3}}{2m} \approx \frac{M^{2/3} N^{5/3} \hbar^2}{2m R^2}.

当白矮星的总能量 Eg + Ek 最小时,它处于稳定平衡态。从这点来看,重力势能动能应该相等。 于是,我们得到下式:

|E_g|\approx\frac{GM}{R} = E_k\approx\frac{M^{2/3} N^{5/3} \hbar^2}{2m R^2}.

由上式求解半径 R, 就得到[37]

 R \approx \frac{N^{5/3} \hbar^2}{2m GM^{1/3}}.

上式中, N 取决于白矮星的元素组成比例,而ħ 是个普适常数(恒量)。由此,我们获得白矮星质量与半径之间的比例关系为:

R \sim \frac{1}{M^{1/3}}, \,

就是说,白矮星的半径与其质量的立方根成反比例关系。

白矮星的质量——半径关系图

上述计算中的势能采用了牛顿公式,所以计算结果是非相对论性的。假如我们对计算中的白矮星内电子速度做相对论性修正,就是说当电子速度逼近光速c 时,我们应把电子动能 p2/2m 用狭义相对论的近似值pc 代替。经过这个替换,我们就发现

E_{k\ {\rm relativistic}} \approx \frac{M^{1/3} N^{4/3} \hbar c}{R}.

如果我们把此式与Eg 联立取等,就可看到R 已经消去,而质量M 的极限值约为[37]

M_{\rm limit} \approx N^2 \left(\frac{\hbar c}{G}\right)^{3/2}.

对这个质量极限的解释是:因为白矮星的质量与其体积成反向关系,当我们增加白矮星的质量时,它的半径反而缩小。于是,根据测不准原理,电子的动量或者说它的速度将增加。当电子运动速度逼近光速c 时,相对论性计算的准确度迅速提高,意味着白矮星质量 M 将收敛于Mlimit。因光速不可逾越,白矮星的质量不可能大于质量极限Mlimit

要更精确的计算白矮星的质量——半径关系和质量极限,必须考虑描述白矮星物质密度与压强关系的状态方程式

形成[编辑]

白矮星是低质量的恒星的演化路线的终点。在红巨星阶段的末期,恒星的中心会因为温度、压力不足或者核融合达到阶段而停止产生能量(产生比铁还重的元素不能产生能量,而需要吸收能量)。恒星外壳的重力会压缩恒星产生一个高密度的天体。

一个典型的稳定独立白矮星具有大约半个太阳质量,比地球略大。这种密度仅次于中子星夸克星。如果白矮星的质量超过1.4倍太阳质量,那么原子核之间的电荷斥力不足以对抗重力,电子会被压入原子核而形成中子星

大部分恆星演化过程都包含白矮星阶段。由于很多恒星会通过新星或者超新星爆发将外壳抛出,一些质量略大的恒星也可能最终演化成白矮星。

双星或者多星系统中,由于恆星质量(物質)的交换,恒星的演化过程与单独的恒星不同,例如天狼星伴星就是一颗年老的大约一个太阳质量的白矮星,但是天狼星是一颗大约2.3个太阳质量的主序星

历史上的发现[编辑]

1892年,Alvan Graham Clark发现天狼星的伴星。根据对恒星数据的分析,这个伴星的质量约一个太阳质量,表面温度大约25000K,但是其光度大约是天狼星的万分之一,所以根据光度和表面积的关系,推断出其大小与地球相当。这样的密度是地球上的物质达不到的。1917年,Adriaan Van Maanen发现了目前已知离太阳最近的白矮星Van Maanen星。

在二十世纪初由Max Planck等人發展出量子理论之後,Ralph H. Fowler于1926年建立了一个基于费米-狄拉克统计的解释白矮星的密度的理论。

1930年,苏布拉马尼扬·钱德拉塞卡发现了白矮星的质量上限(钱德拉塞卡极限),并因此获得1983年的诺贝尔物理学奖

相關條目[编辑]

參考資料[编辑]

  1. ^ 1.0 1.1 1.2 1.3 Extreme Stars: White Dwarfs & Neutron Stars, Jennifer Johnson, lecture notes, Astronomy 162, Ohio State University. Accessed on line 2007-05-03.
  2. ^ The One Hundred Nearest Star Systems, Todd J. Henry, RECONS, 2007-04-11. Accessed on line 2007-05-04.
  3. ^ 3.0 3.1 3.2 3.3 White Dwarfs, E. Schatzman, Amsterdam: North-Holland, 1958.
  4. ^ 4.0 4.1 4.2 4.3 How Degenerate Stars Came to be Known as White Dwarfs, J. B. Holberg, Bulletin of the American Astronomical Society 37 (December 2005), p. 1503.
  5. ^ 5.0 5.1 The Potential of White Dwarf Cosmochronology, G. Fontaine, P. Brassard, and P. Bergeron, Publications of the Astronomical Society of the Pacific 113, #782 (April 2001), pp. 409–435.
  6. ^ 6.0 6.1 6.2 Late stages of evolution for low-mass stars, Michael Richmond, lecture notes, Physics 230, Rochester Institute of Technology. Accessed on line 2007-05-03.
  7. ^ On Possible Oxygen/Neon White Dwarfs: H1504+65 and the White Dwarf Donors in Ultracompact X-ray Binaries, K. Werner, N. J. Hammer, T. Nagel, T. Rauch, and S. Dreizler, pp. 165 ff. in 14th European Workshop on White Dwarfs; Proceedings of a meeting held at Kiel, July 19–23, 2004, edited by D. Koester and S. Moehler, San Francisco: Astronomical Society of the Pacific, 2005.
  8. ^ A Helium White Dwarf of Extremely Low Mass, James Liebert, P. Bergeron, Daniel Eisenstein, H.C. Harris, S.J. Kleinman, Atsuko Nitta, and Jurek Krzesinski, The Astrophysical Journal 606, #2 (May 2004), pp. L147–L149. Accessed on line 2007-03-05.
  9. ^ Cosmic weight loss: The lowest mass white dwarf, press release, Harvard-Smithsonian Center for Astrophysics, 2007-04-17.
  10. ^ Astronomy Picture of the Day, 2007 February 15, Planetary Nebula NGC 2440
  11. ^ Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H. V. Peiris, L. Verde, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, arXiv:astro-ph/0603449v2, 2007-02-27.
  12. ^ Catalogue of Double Stars, William Herschel, Philosophical Transactions of the Royal Society of London 75 (1785), pp. 40–126
  13. ^ The orbit and the masses of 40 Eridani BC, W. H. van den Bos, Bulletin of the Astronomical Institutes of the Netherlands 3, #98 (1926-07-08), pp. 128–132.
  14. ^ Astrometric study of four visual binaries, W. D. Heintz, Astronomical Journal 79, #7 (July 1974), pp. 819–825.
  15. ^ An A-Type Star of Very Low Luminosity, Walter S. Adams, Publications of the Astronomical Society of the Pacific 26, #155 (October 1914), p. 198.
  16. ^ 16.0 16.1 On the Variations of the Proper Motions of Procyon and Sirius, F. W. Bessel, communicated by J. F. W. Herschel, Monthly Notices of the Royal Astronomical Society 6 (December 1844), pp. 136–141.
  17. ^ 17.0 17.1 The Companion of Sirius, Camille Flammarion, The Astronomical Register 15, #176 (August 1877), pp. 186–189.
  18. ^ The Spectrum of the Companion of Sirius, W. S. Adams, Publications of the Astronomical Society of the Pacific 27, #161 (December 1915), pp. 236–237.
  19. ^ Two Faint Stars with Large Proper Motion, A. van Maanen, Publications of the Astronomical Society of the Pacific 29, #172 (December 1917), pp. 258–259.
  20. ^ The Mean Parallax of Early-Type Stars of Determined Proper Motion and Apparent Magnitude, Willem J. Luyten, Publications of the Astronomical Society of the Pacific 34, #199 (June 1922), pp. 156–160.
  21. ^ Note on Some Faint Early Type Stars with Large Proper Motions, Willem J. Luyten, Publications of the Astronomical Society of the Pacific 34, #197 (February 1922), pp. 54–55.
  22. ^ Additional Note on Faint Early-Type Stars with Large Proper-Motions, Willem J. Luyten, Publications of the Astronomical Society of the Pacific 34, #198 (April 1922), p. 132.
  23. ^ Third Note on Faint Early Type Stars with Large Proper Motion, Willem J. Luyten, Publications of the Astronomical Society of the Pacific 34, #202 (December 1922), pp. 356–357.
  24. ^ 24.0 24.1 Stars and Atoms, A. S. Eddington, Oxford: Clarendon Press, 1927.
  25. ^ The search for white dwarfs, W. J. Luyten, Astronomical Journal 55, #1183 (April 1950), pp. 86–89.
  26. ^ A Catalog of Spectroscopically Identified White Dwarfs, George P. McCook and Edward M. Sion, The Astrophysical Journal Supplement Series 121, #1 (March 1999), pp. 1–130.
  27. ^ A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4, Daniel J. Eisenstein, James Liebert, Hugh C. Harris, S. J. Kleinman, Atsuko Nitta, Nicole Silvestri, Scott A. Anderson, J. C. Barentine, Howard J. Brewington, J. Brinkmann, Michael Harvanek, Jurek Krzesiński, Eric H. Neilsen, Jr., Dan Long, Donald P. Schneider, and Stephanie A. Snedden, The Astrophysical Journal Supplement Series 167, #1 (November 2006), pp. 40–58.
  28. ^ The Lowest Mass White Dwarf, Mukremin Kulic, Carlos Allende Prieto, Warren R. Brown, and D. Koester, The Astrophysical Journal 660, #2 (May 2007), pp. 1451–1461.
  29. ^ 29.0 29.1 White dwarf mass distribution in the SDSS, S. O. Kepler, S. J. Kleinman, A. Nitta, D. Koester, B. G. Castanheira, O. Giovannini, A. F. M. Costa, and L. Althaus, Monthly Notices of the Royal Astronomical Society 375, #4 (March 2007), pp. 1315–1324.
  30. ^ Masses and radii of white-dwarf stars. III - Results for 110 hydrogen-rich and 28 helium-rich stars, H. L. Shipman, The Astrophysical Journal 228 (1979-02-15), pp. 240–256.
  31. ^ Exotic Phases of Matter in Compact Stars, Fredrik Sandin, licentiate thesis, Luleå University of Technology, 2005-05-08.
  32. ^ Preliminary General Catalogue, L. Boss, Washington, D.C.: Carnegie Institution, 1910.
  33. ^ The Age and Progenitor Mass of Sirius B, James Liebert, Patrick A. Young, David Arnett, J. B. Holberg, and Kurtis A. Williams, The Astrophysical Journal 630, #1 (September 2005), pp. L69–L72.
  34. ^ The Densities of Visual Binary Stars, E. Öpik, The Astrophysical Journal 44 (December 1916), pp. 292–302.
  35. ^ On the relation between the masses and luminosities of the stars A. S. Eddington, Monthly Notices of the Royal Astronomical Society 84 (March 1924), pp. 308–332.
  36. ^ The Relativity Displacement of the Spectral Lines in the Companion of Sirius Walter S. Adams, Proceedings of the National Academy of Sciences of the United States of America 11, #7 (July 1925), pp. 382–387.
  37. ^ 37.0 37.1 37.2 Estimating Stellar Parameters from Energy Equipartition, ScienceBits. Accessed on line May 9, 2007.

外部鏈結和延伸讀物[编辑]

Wiktionary-logo-zh.png
维基词典上的词义解释:

一般[编辑]

  • White Dwarf Stars, Steven D. Kawaler, in Stellar remnants, S. D. Kawaler, I. Novikov, and G. Srinivasan, edited by Georges Meynet and Daniel Schaerer, Berlin: Springer, 1997. Lecture notes for Saas-Fee advanced course number 25. ISBN 3-540-61520-2.

物理[编辑]

變化性[编辑]

磁場[编辑]

頻率[编辑]

觀測的[编辑]