碳-氟鍵

维基百科,自由的百科全书
跳转至: 导航搜索
極性碳-氟鍵部分電荷分布之示意圖

碳-氟鍵是在之間的極性共價鍵,它是所有有機氟化合物的組成。由於其局部的離子鍵特性,在有機化學中,它是最強的單鍵和相對短小的鍵。氟被添加到化合物中的同一碳上時,該鍵增強且鍵長縮短。因此,氟烷四氟甲烷(四氟化碳)為最不活潑的有機化合物。

電負性和鍵結強度[编辑]

氟的高電負性(氟4.0與碳2.5)賦予碳-氟鍵顯著的極性/偶極矩。電子密度被集中圍繞在氟,在碳留下的電子密度相對較差。透過部分電荷 (Cδ+—Fδ−),碳-氟鍵有部分離子鍵的特性。氟和碳的部分電荷有吸引力,促進了碳-氟鍵的不尋常的鍵結強度。在有機化學中,此鍵被標記為“最強的”,是因為氟與碳形成最強的單鍵。"[1] 碳 - 氟鍵可以具有高達544千焦/摩爾的鍵解離能(BDE)。[2] BDE(鍵結強度)比其它的碳 – 鹵素與碳 – 鍵更高。例如,CH3X表示某個分子,碳 - 氟具有的115千卡/摩爾,碳與氫,氯,溴,碘所形成之鍵結,分別有104.9,83.7,72.1,和57.6千卡/摩爾的BDE。[3]

鍵長[编辑]

碳 - 氟鍵長度通常為約1.35 埃(Å) ,(氟甲烷 為1.39 Å).[1] 比任何其他的碳 – 的鍵還要短,並且比單個碳 – ,碳 – 鍵短,儘管氟具有較大的原子質量。鍵的長短也可以歸因於碳和氟的局部電荷之間的離子特性/靜電引力。 碳 - 氟鍵的長度幾百分之一埃,取決於碳原子的雜合(hybridization)和碳上其它取代基,甚至在離原子更遠的地方。這些波動可以作為細微的雜交變化和立體電子效應的跡象。下面的表格顯示了平均鍵長在不同的鍵合環境(碳原子數是sp3雜交,除非有另外指名是sp2或芳族碳)是如何變化的。

鍵結 平均鍵長(Å)[4]
CCH2F, C2CHF 1.399
C3CF 1.428
C2CF2, H2CF2, CCHF2 1.349
CCF3 1.346
FCNO2 1.320
FCCF 1.371
Csp2F 1.340
CarF 1.363
FCarCarF 1.340

鍵長的改變和氟鍵的縮短是由於它們的部分離子特性,部分離子特性也可以在氟和其他元素之間觀察到,而困難的是該如何選擇適當的氟共價半徑的值。萊納斯•鮑林最初提出64pm,但該值最終被72pm取代,這是氟 - 氟鍵一半的長度。然而,72pm對於氟和其他元素之間的鍵而言,為過長的長度,所以其他作者提議以54pm至60pm之間的值作為氟共價半徑的值。[5] [6][7][8]

鍵結強度影響成對的鍵[编辑]

隨著增加的氟原子,對相同的( 成對 )碳的其他鍵變得更強和更短。對氟甲烷系列而言,這可以看出鍵長和強度(BDE)的改變,如下面的表格所示;此外,在原子上的部分電荷(qC and qF)改變系列[2],當氟添加時,碳上的部分電荷變得更陽性,在氟和碳之間,增加靜電相互作用和離子特性。

化合物 碳 - 氟鍵長度(Å) BDE (kcal/mol) qC qF
CH3F 1.385 109.9 ± 1 0.01 −0.23
CH2F2 1.357 119.5 0.40 −0.23
CHF3 1.332 127.5 0.56 −0.21
CF4 1.319 130.5 ± 3 0.72 −0.18

扭轉效應[编辑]

1,2-二氟乙烷的反式 (左) 和扭轉(gauche )(右) 結構。下排顯示其 紐曼投影.

當2個氟原子是位在鄰位(即相鄰)的碳原子,如在1,2 - 二氟乙烷(H2FCCFH2),時,扭轉構象比反構象更穩定,這是相反於大部分的1,2 - 二取代乙烷類通常會被預期到和觀察到;此種現象被稱為扭轉效應(gauche effect) [9]。 1,2 - 二氟乙烷,該扭轉構象比反構象更穩定,在氣相中,更穩定2.4至3.4千焦耳/摩爾。這種效果不是指會出現在氟鹵素,然而; 扭轉效應,也可以在1,2 - 二甲氧基乙烷觀察到。一個相關的效果是烯烴順式作用。例如,1,2 - 二氟乙烯的順式異構體比反式異構體更穩定。[10]

用超共軛模型解釋1,2 - 二氟乙烷的扭轉效應的影響

這裡有兩個主要影響扭轉效應的解釋:超共軛和彎曲的鍵結。在超共軛的模型,從碳-氫σ鍵軌道到碳 - 氟σ*反鍵軌道的電子密度的捐贈被認為是穩定扭轉異構體的來源。由於氟更大的電負性,碳 - 氫σ軌道比碳氟σ軌道是更好的電子供體,而碳-氟σ*軌道比碳 - 氫σ*軌道為一個更好的電子受體。只有扭轉構象允許在更好的供體和受體之間的良好重疊。

在二氟乙烷扭轉效應的彎曲鍵關鍵解釋是,在兩個碳 - 氟鍵增加p軌域,由於氟的電負性大。其結果是電子密度建立在中央碳 - 碳鍵的上方、下方、左側和右側。由此此結果可以減少軌道重疊,當一個扭轉效應被假設,形成一個彎曲的鍵。在這兩種模式,超共軛通常被認為是二氟乙烷的扭轉效應的主要原因。[1][11]

光譜分析[编辑]

紅外光譜中,碳 - 氟鍵的伸縮出現在1000和1360 cm−1之間。寬範圍是由於偵查到其它在分子中的取代基。單氟化化合物在1000和1110 cm−1之間有著強大頻帶;超過一個以上的氟原子,頻帶分割成兩個頻帶,一個用於對稱模式,另一個用於不對稱[12],碳 - 氟頻帶是很強烈,導致它們可能掩蓋其他能存在的碳 - 氫頻帶[13]


有機氟化合物也可以透過使用NMR光譜分析,用碳-13氟-19(唯一的天然氟同位素) 或氫-1 (如果存在) 。在19F NMR的化學位移出現在很寬的範圍內,根據替代和官能團的程度。下表顯示範圍的一些主要類別。[14]

化合物類型 化學位移範圍 (ppm) (與CFCl3比較)
F–C=O −70 to −20
CF3 +40 to +80
CF2 +80 to +140
CF +140 to +250
ArF +80 to +170

外部連結[编辑]

參考文獻[编辑]

  1. ^ 1.0 1.1 1.2 O'Hagan D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev. February 2008, 37 (2): 308–19. doi:10.1039/b711844a. PMID 18197347. 
  2. ^ 2.0 2.1 Lemal DM. "Perspective on Fluorocarbon Chemistry" J Org Chem. 2004, volume 69, p 1–11. doi:10.1021/jo0302556
  3. ^ Blanksby SJ, Ellison GB. Bond dissociation energies of organic molecules. Acc. Chem. Res. April 2003, 36 (4): 255–63. doi:10.1021/ar020230d. PMID 12693923. 
  4. ^ F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen. Tables of bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc. Perkin Trans. II 1987, S1-S19.
  5. ^ Gillespie, Ronald, and Edward Robinson. 1992 Bond Lengths in Covalent Fluorides. A New Value for the Covalent Radius of Fluorine. Inorganic Chemistry, 31, 1960-1963.
  6. ^ Robinson, Edward, Samuel Johnson, Ting-Hua Tang, and Ronald Gillespie. 1997. Reinterpretation of the Lengths of Bonds to Fluorine in Terms of an Almost Ionic Model. Inorganic Chemistry, 36, 3022-3030.
  7. ^ Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán and Santiago Alvarez. Covalent radii revisited. Dalton Trans., 2008, 2832-2838, doi:10.1039/b801115j
  8. ^ P. Pyykkö, M. Atsumi, Chem. Eur. J., 15, 2009,186-197 doi:10.1002/chem.200800987.
  9. ^ Contribution to the Study of the Gauche Effect. The Complete Structure of the Anti Rotamer of 1,2-Difluoroethane Norman C. Craig, Anthony Chen, Ki Hwan Suh, Stefan Klee, Georg C. Mellau, Brenda P. Winnewisser, and Manfred Winnewisser J. Am. Chem. Soc.; 1997; 119(20) pp 4789 - 4790; (Communication) doi:10.1021/ja963819e
  10. ^ The stereochemical consequences of electron delocalization in extended .pi. systems. An interpretation of the cis effect exhibited by 1,2-disubstituted ethylenes and related phenomena Richard C. Bingham J. Am. Chem. Soc.; 1976; 98(2); 535-540 Abstract
  11. ^ Goodman, L.; Gu, H.; Pophristic, V.. Gauche Effect in 1,2-Difluoroethane. Hyperconjugation, Bent Bonds, Steric Repulsion. J. Phys. Chem. A. 2005, 109, 1223-1229. doi:10.1021/jp046290d
  12. ^ George Socrates, Socrates. Infrared and Raman characteristic group frequencies: tables and charts. John Wiley and Sons. 2001: 198. ISBN 0-470-09307-2. 
  13. ^ Barbara H. Stuart. Infrared Spectroscopy: Fundamentals and Applications. John Wiley and Sons. 2004: 82. ISBN 0-470-85428-6. 
  14. ^ http://nmr.chem.indiana.edu/NMRguide/misc/19Fshifts.html
CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl Ar
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr Kr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
La CCe Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Ac Th Pa CU Np Pu Am Cm Bk Cf Es Fm Md No Lr


化合物
  应用广泛
  应用较多
  仅限学术研究
  尚未发现