立方體

维基百科,自由的百科全书
跳转至: 导航搜索
正六面體
立方體
(按這裡觀看旋轉模型)
類別 正多面体
6
12
頂點 8
歐拉特徵數 F=6, E=12, V=8 (χ=2)
面的種類 正方形
面的佈局英语Face configuration 6{4}
頂點圖英语Vertex figure 4.4.4
施萊夫利符號 {4,3}
對稱群 3
參考索引 U06, C18, W3
對偶 正八面體
二面角 90°
特性 環帶多面體
Cube vertfig.png
4.4.4
(頂點圖)
Hexahedron flat color.svg
(展開圖)

立方體(Cube)',是由6個正方形組成的正多面體,故又稱正六面體(Hexahedron)正方體正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。

立方體是一種特殊的正四棱柱長方體、三角偏方面體菱形多面體平行六面體,就如同正方形是特殊的矩形菱形平行四邊形一様。立方體具有正八面體對稱性英语Octahedral symmetry,即考克斯特BC3對稱性,施萊夫利符號{4,3},考克斯特-迪肯符號英语Coxeter-Dynkin digramCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png,與正八面體對偶。

性質[编辑]

面的圖形:正方形
面的數目:6
邊的數目:12
頂點數目:8
表面積:6a^2\
體積:a^3\
二面角角度:90^\circ
外接球半徑:\sqrt{\frac{3}{4}}a\approx 0.866 a
內接球半徑:\frac a 2
對偶多面體:正八面體
在所有表面积一定的长方体中,立方体的体积最大,同样,在所有线性大小(长宽高之和)一定的长方体中,立方体的体积也是最大的。反过来,体积相等的长方体中,立方体拥有最小表面积和线性大小。

正交投影[编辑]

我们可以从不同角度将立方体投影到二维平面上,这些投影都各自携带有立方体原本BC3对称性的一部分。

正交投影
正对于 正方形面 顶点
考克斯特群 B2
2-cube.svg
A2
3-cube t0.svg
投影
对称性
[4] [6]
倾斜视角 Cube t0 e.png Cube t0 fb.png

顶点坐标及表面方程[编辑]

在三维直角坐标系中,对于以原点为中心的、各棱平行于坐标轴的、棱长为2的立方体,其顶点坐标为
(±1, ±1, ±1)
的全排列。它包含了所有满足|x|≤1且|y|≤1且|z|≤1的点(x,y,z)。
在R3中,以点(x0,y0,z0)为中心的立方体表面是点(x,y,z)的运动轨迹,其中x,y,z满足:

 \lim_{n \to \infty} (x - x_0 )^n + (y - y_0 )^n + ( z - z_0 )^n - a^n = 0.

半正对称性与表面涂色[编辑]

作为正多面体之一,立方体拥有较高的对称性,它的所有面在几何上都是相同的,不可区分的。可是我们也可以想象将立方体的面“涂上”不同的“颜色”,使它其的不同面拥有不同的“几何意义”,使立方体拥有不同的对称性。在立方体完全的对称性,即正八面体对称性Oh中,立方体的所有面都是相同的。二面体对称性D4h则将立方体描述得像一个正四棱柱,有两个颜色相同的上下底面,其余4个侧面颜色相同。立方体最低的对称性D2h也将立方体描述的像一个棱柱,不过是长方形棱柱,即一个长方体,它的相对的面颜色相同,而相邻的面是不同的。每一种半正对称性都有自己的施莱夫利符号考克斯特-迪肯符号英语Coxeter-Dynkin digramWythoff符号英语Wythoff symbol。此外,由于其对偶正八面体也可被看作是正三反棱柱,立方体也可被看作是正三反棱柱的对偶,即正三偏方面体

名称 正六面体 正四棱柱 长方体 正三偏方面体
考克斯特符号英语Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node fh.pngCDel 2.pngCDel node fh.pngCDel 6.pngCDel node.png
施莱夫利符号 {4,3} {4}×{} {}×{}×{}
Wythoff符号英语Wythoff symbol 3 | 4 2 4 2 | 2 2 2 2 |
对称性英语List of spherical symmetry groups Oh
(*432)
D4h
(*422)
D2h
(*222)
D3d
(2*3)
对称群阶 24 16 8 12
图像
(半正表面涂色)
Hexahedron.png
(111)
Tetragonal prism.png
(112)
Uniform polyhedron 222-t012.png
(123)
Trigonal trapezohedron.png
(111), (112), (122), 及(222)

几何性质[编辑]

立方体有11种不同的展开图,即是说,我们可以有11种不同的方法切开空心立方体的7条棱而将其展平为平面图形,见右图。

立方体的11种不同展开图

如果我们要将立方体涂色而使相邻的面不带有相同的颜色,则我们至少需要3种颜色(类似于四色问题)。
立方体是唯一能够独立密铺三维欧几里得空间柏拉图正多面体,因此立方体堆砌也是四维唯一的正堆砌(三维空间中的堆砌拓扑上等价于四维多胞体)。它又是柏拉图立体中唯一一个有偶数边面——正方形面的,因此,它是柏拉图立体中独一无二的环带多面体(它所有相对的面关于立方体中心中心对称)。
将立方体沿对角线切开,能得到6个全等的正4棱柱(但它不是半正的,底面棱长与侧棱长之比为2:√3)将其正方形面贴到原来的立方体上,能得到菱形十二面体(Rhombic Dodecahedron)(两两共面三角形合成一个菱形)。

與其他形狀的關係[编辑]

Tetraeder-Animation.gif
  • 將立方體的其中四個頂點相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt 2,其體積為立方體體積的\frac{1}{3}


正四面體外接正六面體
Octahedron in Cube.png
Cube in Octahedron.png

當正八面體在立方體之內:
正八面體體積 : 立方體體積
=[(1/3)×高×底面積]×2 : 邊3
=(1/3)(n/2)[(n2)/2]2 : n3
=1 : 6

  • 截半立方體:從一條棱斬去另一條棱的中點得出
  • 截角立方體
  • 超正方體:立方體在高維度的推廣。更加一般的,立方体是一个大家族,即立方形家族(又称超方形、正测形)的3维成员,它们都具有相似的性质(如二面角都是90°、有类似的超体积公式,即Vn-cube=an等)。
  • 長方體偏方面體的特例。

相关多面体[编辑]

将立方体对映映射英语Antipodal point后的到的商形成的一个实射影多面体,即Hemi-立方体英语Hemicube(hemicube)(不应叫其“半立方体”,因为其易与‘demicube’混淆)。

Hemi-立方体是立方体2到1的商


正方体的对偶多面体正八面体,如果原正方体棱长为1,则对偶正八面体棱长为√2。
正方体是一种最特殊的四边形正六面体:

名称 棱长相等? 对角相等? 各角为直角?
立方体
菱面体
长方体
平行六面体
四边形正六面体

立方体的8个顶点可以被交错地分为两组,每一组都构成一个完整的正四面体,更严格地说,这是作为半(Demi-)立方体英语demihypercube(demicube)的正四面体。这两个正四面体组合到一起,就构成了一个正的复合多面体——星形正八面体(Stella Octagula)。两个正四面体重合的地方构成凸的正八面体。这意味着,正四面体的对称群A3是正方体对称群的子群,对应着能将半立方体变换到自身的对称变换,立方体其余的对称变换能将两个半立方体变换到对方。一个这样的正四面体占据了立方体体积的1/3,立方体剩余的部分是4个全等的、顶角是立方体立体角的正三棱锥,各占立方体体积的1/6
从立方体各棱中点处切掉立方体的角,我们会发现原先立方体的正方形面变成了其对偶的正方形面,而切掉的顶点处出现了新的正三角形面,这样的操作叫“截半”(Rectification),得到的半正多面体截半立方体(Rectified Cube),又叫立方八面体(Cuboctahedron)。如果我们不在棱中点处截它,则这种操作叫“截顶”(Truncation),正方形面变成了八边形。如果截的合适,则我们可将正方形截成正八边形,得到的半正多面体叫截顶立方体(Truncated Cube)。如果我们同时截掉立方体的棱和顶,则这种操作叫“截棱”(Centellation),如果截的恰当,得到的半正多面体是小斜方截半立方体(Rhombicuboctahedron)。

正十二面体有20个顶点,它们可以以不同组合分成由8个顶点组成的5组,这8个顶点两两相连,构成内接在正十二面体内部的立方体,它的棱都是正十二面体的各面的对角线。这五个立方体组合在一起,构成复合多面体——五复合立方体

正十二面体内部的五复合立方体


如果我们完全切掉立方体相对的两个顶点,我们会得到一个非正的八面体,将8个这样的八面体正三角形面对正三角形面贴到正八面体上,则我们得到截半立方体。
立方体与所有其它拥有BC3对称性的多面体(如正八面体和立方八面体)构成正八面体家族:

半正正八面体家族多面体
对称性: [4,3], (*432) [4,3]+, (432) [1+,4,3], (*332) [4,3+], (3*2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t2.png Uniform polyhedron-43-h01.svg
{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}
半正多面体的对偶
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Dodecahedron.svg
V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3

此外,立方体在拓扑上与其它3阶正镶嵌{n,3}相关:

多面体 欧式镶嵌 双曲镶嵌
Spherical trigonal hosohedron.png
{2,3}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t0.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-63-t0.png
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 237-1.png
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 238-1.png
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
... H2 tiling 23i-1.png
{∞,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png

立方体在拓扑上还和其它阶的正方形正镶嵌{4,n}(n≥3)有关:

多面体 欧式镶嵌 双曲镶嵌
Digonal dihedron.png
{4,2}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.png
Uniform polyhedron-43-t0.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 45-t0.png
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 46-t0.png
{4,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 47-t0.png
{4,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
Uniform tiling 48-t0.png
{4,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
... H2 tiling 24i-4.png
{4,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png

立方体是正四棱柱:

正多邊形柱體系列
對稱群英语List of spherical symmetry groups 3 4 5 6 7 8 9 10 11 12
[2n,2]
[n,2]
[2n,2+]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 8.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 9.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 10.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 10.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 11.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 12.pngCDel node h.pngCDel 2.pngCDel node h.png
圖像 Triangular prism.png Tetragonal prism.png
Uniform polyhedron 222-t012.png
Cube rotorotational symmetry.png
Pentagonal prism.png Hexagonal prism.png
Truncated triangle prism.png
Cantic snub hexagonal hosohedron.png
Prism 7.png Octagonal prism.png
Truncated square prism.png
Cantic snub octagonal hosohedron.png
Prism 9.png Decagonal prism.png Hendecagonal prism.png Dodecagonal prism.png
球面多面體
圖像 Spherical triangular prism.png Spherical square prism.png
Spherical square prism2.png
Spherical pentagonal prism.png Spherical hexagonal prism.png
Spherical hexagonal prism2.png
Spherical heptagonal prism.png Spherical octagonal prism.png
Spherical octagonal prism2.png
Spherical decagonal prism.png
Spherical decagonal prism2.png

應用[编辑]

Impossible cube.jpg

數學問題[编辑]

由正方體展開圖可得知正方體表面積算法
正六邊形的切法:沿上底兩條鄰邊的中點,切至下底兩條鄰邊的中點

體積與表面積[编辑]

  • 體積=長×寬×高=邊3
  • 面積=每個面面積×6=邊2×6

倍立方體問題[编辑]

參見尺規作圖,已經證明此題無法用無刻度的直尺與圓規去畫出\sqrt[3]{2}的位置

最大的橫切面[编辑]

立方體的橫切面只有四種:

其中以正六邊形的面積最大,若立方体的棱长为a,则正六边形的面积为\frac{3\sqrt{3}a^2}{4}

參見[编辑]

外部連結[编辑]