类 (数学)

维基百科,自由的百科全书
跳转至: 导航搜索

集合論及其數學應用中,是由集合(或其他數學物件)的搜集(collection),可以依所有成員所共享的性質被無歧定義。有些類是集合(例如由所有偶數構成的類),但有些則不是(如所有序數所構成的類或所有集合所構成的類)。一個不是集合的類被稱之為真類。一个是集合的类被称为“小类”。

在數學裡,有許多物件對集合而言太大,而必須以類來描述,像是大的範疇超實數的類體之類等。要證明一給定「事物」為一真類,一般的程序是證明此一「事物」至少有著如序數一般多的元素。有關此一證明的例子,請參見自由格

真類不能是一個集合或者是一個類的元素,而且不符合集合論中的ZF公理;因此避免掉了許多樸素集合論中的悖論。这些悖论可以用“所有类都是集合”这一论断的不一致性而解释。而實際上,這些悖論成了證明某一個類是否為真類的方法之一。例如,羅素悖論可以證明由所有不包含集合自身的集合所構成的類是一個真類,而布拉利-福尔蒂悖论則可證明所有序數所構成的類是一個真類。

標準的ZF集合論公理不會論及到類;類只存在於元語言邏輯公式的等價類之中。馮諾伊曼-博內斯-哥德爾集合論則採取了另一種方式;類在此一理論中是基礎的物件,而集合則被定義為可以是其他某些類的元素的類。真類,則為不可以是其他任何類的元素的類。

在其他集合論如新基礎半集合論中,「真類」的概念依然是有意義的(不是任一堆事物都會是集合),但對集合特質的認定並非依據其大小。例如,所有包含泛集合的集合論都會有個是集合的子類的真類。

「類」這一詞有時會和「集合」同義,最為人知的是「等價類」這一術語。這種用法是因為從前對類和集合不如現今一樣地區別的緣故。許多19世紀之前對「類」的討論提及的實際上是集合,甚至會是個更為不清的概念。

引用[编辑]

另見[编辑]