網 (數學)

维基百科,自由的百科全书
跳转至: 导航搜索

拓撲學數學的相關領域裡,序列的廣義化,用來統一極限不同的概念和將其廣義至任意的拓撲空間。網的極限對一般拓撲空間扮演的角色,就好比序列的極限之於第一可數空間(例如度量空間)。

一個序列通常以為全序集合自然數做為索引。網廣義化了此一概念,以把索引集合上的次序关系削弱成有向集合

網於西元1922年首次由E. H. 摩爾H. L. Smith提出。另一相關的概念-濾子則於西元1937年由昂利·嘉當所發展。

定義[编辑]

X是一拓撲空間,X中的是指一由某一有向集合AX函數

A是一有向集合,通常會把由AX的網寫成(xα),以用來表示A的元素α映射到X的元素xα上。通常用≥來標記由A所給定的二元關係。

例子[编辑]

自然數是一有向集合且序列是定義域為自然數的函數時,每一序列都會是一個網。

另一重要例子如下。給定拓撲空間上的一點x,讓Nx標記為所有包含x鄰域的集合。然後,Nx會是個有向集合,其方向由內含的顛倒給定,即STS包含在T裡時。對在Nx內的S,讓xS標記為S內的一點。然後,xS便會是一個網。當S對≥而言為增加時,網內的點sS會被限制在x的遞減鄰域內,直觀地說,這使得xS在某些意義上時必須趨向x。下面將把這一極限的概念講述的更清楚。

網的極限[编辑]

若(xα)是一由有向集合AX的網,且若YX的子集,則我們說(xα)是最終於 Y若存在一在A內的α能使得任一在A內會有β ≥ α的β,其點xβ會在Y內。

若(xα)是拓撲空間X內的一網,且xX的一元素,我們說這一個網收斂至 x或稱有極限 x,並寫做

lim xα = x

若且唯若

對任一x鄰域U,(xα)會最終於U

直觀地說,這表示xα會很靠近x,若α取得夠大。

注意,上述所舉的在一點x邻域系统上的網根據定義是會確實地收斂至x了。

網的極限的例子[编辑]

  • 變數的函數極限:limxc f(x)。這裡,我們根據距c的距離在集合R\{c}內取向。

追加定義[编辑]

DE為有向集合,且h為一由DE的函數,則h被稱為共尾,若對任一在E內的e,總存在一在D內的d會使得當qD的元素且qd時,h(q) ≥ e。換句地話,其值域h(D)會共尾E

DE為有向集合,h為由EE的共尾函數,且φ是以E為基的集合X的網,則φoh稱做φ的子網。所有的子網都是這種類型,依其定義。

若φ是一以有向集合D為底的集合X的網,且AX的子集,則φ頻繁地在 A,當對於任一在D內的α,存在一在D的β且β ≥ α以使φ(β)在A內。

集合X的網φ稱做普遍的(或超網),若對於任一X的子集A,φ會最終於A或會最終於X-A

性質[编辑]

幾乎所有拓撲概念都能以網與極限的語言表述。這可以作為直覺的南鍼,因為網的極限在概念上近於序列的極限,後者在度量空間理論中被廣泛地運用。

  • 拓撲空間之間的函數 f: X \to Y 在一點 x \in X 連續若且唯若對於每個網 (x_\alpha),若
\lim x_\alpha = x

則有

\lim f(x_\alpha) = f(x)

若將「網」換為「序列」,則此定理一般非真。當空間 X 非第一可數時,必須考慮比自然數集更廣的有向集。

  • 一般而言,空間 X 的網可以有多個極限。當 X豪斯多夫空間時,極限是唯一的;反之,若 X 非豪斯多夫空間,則存在 X 中的一個網,使得它有兩個不同極限,因此豪斯多夫性質可以用網的極限刻劃。注意到此結果有賴於有向條件,以一般的預序或偏序為指標的集合仍可能有多個極限。
  • 給定子集合 U \subset X,則 x 屬於 U閉包若且為若存在網 (x_\alpha),使得 x_\alpha \in U 而且 x 為其極限。因此可以用網與極限刻劃閉包運算,從而刻劃開集與閉集。
  • 乘積空間中的網的極限由其投影決定:若X = \prod X_i,則 \lim (x_\alpha) = x 若且唯若 \forall i, \; \lim \pi_i(x_\alpha) = \pi_i(x)
  • f: X \to Y 是連續函數,(x_\alpha) 是超網,則 (f(x_\alpha)) 亦然。

另見[编辑]

濾子的理論也提供了在一般拓撲空間內有關收斂的定義。

一致空間(例如度量空間)中,可以將柯西序列的定義推廣為柯西網,由此導出柯西空間的定義。网 (xα) 是柯西网,如果对于所有周围 V 存在 γ 使得对于所有 α, β ≥ γ,(xα, xβ) 是 V 的成员。

參考[编辑]

E. H. Moore and H. L. Smith (1922). A General Theory of Limits. American Journal of Mathematics 44 (2), 102–121.