華勒斯-波埃伊-格維也納定理

维基百科,自由的百科全书
跳转至: 导航搜索

華勒斯·波埃伊·格維也納定理Wallace-Bolyai-Gerwien theorem)指

兩個簡單多邊形面積相等,那么其中一個能分割成有限多塊多邊形,經過平移旋轉,拼合成第二個多邊形。

塔斯基分割圓問題不同,此證明不但無必要使用選擇公理,而且可以真實進行。

如果將問題中的多邊形換成多面體,即是希爾伯特第三問題。這時答案是否定的。

歷史[编辑]

沃爾夫岡·波埃伊最先陳述此問題。1833年格維也納作出了證明,但事實上華勒斯早在1807年已證明了。