角动量耦合

维基百科,自由的百科全书
跳转至: 导航搜索

量子力学中,由独立角动量本征态构造出总角动量本征态的过程称为角动量耦合。例如,单个粒子的轨道和自旋会通过自旋-轨道相互作用相互影响,完整的物理图象必须包括自旋-轨道耦合。或者说,两个具有明确角动量定义的带电粒子会通过库仑力相互作用,这时将两个单粒子角动量耦合为总角动量,是解两粒子体系薛定谔方程的有用步骤。在这两种情况下,单独的角动量都不再是运动常数,但两个角动量加和通常仍然是。在原子光谱中,原子角动量的耦合非常重要。电子自旋角动量的耦合对于量子化学非常重要。在核壳层模型中也普遍存在角动量耦合[1][2]

在天文学中,自旋轨道耦合同样反映了天体系统中角动量守恒的一般规律。在简单情况下,角动量的矢量方向被忽略,而自旋轨道耦合为行星等绕自身轴线旋转与绕另一个星体旋转的频率比值。这更多称作轨道共振。常见的相关物理效应为潮汐力


一般理论与详细起源[编辑]

耦合角动量(记为IL

角动量守恒[编辑]

角动量守恒原理是指,如果系统在没有受到外部转矩,则该系统的总角动量会维持恒定幅值和方向。在以下两种物理系统下,角动量是一个运动常量(为保守属性、和时间无关且定义明确): #该系统为球对称势场。 #该系统处于(量子力学意义上的)的各向同性空间。

在这两种情况下,系统角动量算符与哈密顿算符可以对易。由海森堡不确定原理系,这意味着角动量和能量(哈密顿的本征值)可以在同时进行测量。

第一种情况的例子如,一个原子的电子只受到原子核库仑力。如果我们忽略了电子 - 电子相互作用(或其它小的相互作用,如自旋轨道耦合),则每个电子的轨道角动量I的总哈密顿算符对易。在这个模型中,原子哈密顿算符是电子动能和球对称形电子 - 核相互作用的总和。各电子的角动量Ii的哈密顿算符对易,也就是说是它们是这种原子近似模型的保守性质。

第二种情况的例子如,刚性转子在无场空间的运动。刚性转子具有明确定义的,与时间无关的角动量。

这两种情况起源于经典力学。第三类角动量守恒与自旋相关,没有经典的对应物。然而,角动量耦合的所有规则同样在自旋中适用。


一般所言的角动量守恒意味着全旋转对称(被称作群SO(3)SU(2)),而另一方面,球对称性意味着角动量守恒。如果两个或多个物理系统具有保守的角动量,则对将这些角动量加和为系统总角动量——整个系统的保守属性——非常有用。将各子体系角动量本征态加和为总体系保守角动量本征态,被称为角动量的耦合。

参考文献[编辑]

  1. ^ R. Resnick, R. Eisberg. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles 2nd. John Wiley & Sons. 1985. ISBN 978-0-471-87373-0. 
  2. ^ P.W. Atkins. Quanta: A handbook of concepts. Oxford University Press. 1974. ISBN 0-19-855493-1.