误差函数

维基百科,自由的百科全书
跳转至: 导航搜索
误差函数

数学中,误差函数(也称之为高斯误差函数)是一个特殊函数(即不是初等函数),其在概率论统计学以及偏微分方程中都有广泛的应用。它的定义如下:[1][2]

\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}\,\mathrm dt.
互补误差函数

互补误差函数,记为 erfc,在误差函数的基础上定义:

\mbox{erfc}(x) = 1-\mbox{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,\mathrm dt\,.

虚误差函数,记为 erfi,定义为:

\operatorname{erfi}(z) = -i\,\,\operatorname{erf}(i\,z).

複誤差函數,记为w(z),也在误差函数的基础上定义:

w(z) = e^{-z^2}{\textrm{erfc}}(-iz).

名称由来[编辑]

误差函数来自测度论,后来与测量误差无关的其他领域也用到这一函数,但仍然使用误差函数这一名字。

误差函数与对正态分布积分的累积分布函数\Phi的关系为[2]

\Phi (x) = \frac{1}{2}+ \frac{1}{2} \operatorname{erf} \left(\frac{x}{\sigma \sqrt{2}}\right).

性质[编辑]

复平面上的图

Integrand exp(−z2)
erf(z)

误差函数是奇函数

\operatorname{erf} (-z) = -\operatorname{erf} (z)

对于任何 复数 z:

\operatorname{erf} (\overline{z}) = \overline{\operatorname{erf}(z)}

其中 \overline{z} 表示 z复共轭

复平面上,函数 ƒ = exp(−z2) 和 ƒ = erf(z) 如图所示。粗绿线表示 Im(ƒ) = 0,粗红线表示 Im(ƒ) < 0, 粗蓝线为 Im(ƒ) > 0。细绿线表示 Im(ƒ) = constant,细红线表示 Re(ƒ) = constant<0,细蓝线表示 Re(ƒ) = constant>0。

在实轴上, z → ∞时,erf(z) 趋于1,z → −∞时,erf(z) 趋于−1 。在虚轴上, erf(z) 趋于 ±i∞。

泰勒级数[编辑]

误差函数是整函数,没有奇点(无穷远处除外),泰勒展开收敛。

误差函数泰勒级数:

\operatorname{erf}(z)= \frac{2}{\sqrt{\pi}}\sum_{n=0}^\infin\frac{(-1)^n z^{2n+1}}{n! (2n+1)} =\frac{2}{\sqrt{\pi}} \left(z-\frac{z^3}{3}+\frac{z^5}{10}-\frac{z^7}{42}+\frac{z^9}{216}-\ \cdots\right)

对每个复数 z均成立。 上式可以用迭代形式表示:

\operatorname{erf}(z)= \frac{2}{\sqrt{\pi}}\sum_{n=0}^\infin\left(z \prod_{k=1}^n {\frac{-(2k-1) z^2}{k (2k+1)}}\right) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^\infin \frac{z}{2n+1} \prod_{k=1}^n \frac{-z^2}{k}

误差函数的导数

\frac{\rm d}{{\rm d}z}\,\mathrm{erf}(z)=\frac{2}{\sqrt{\pi}}\,e^{-z^2}.

误差函数的 不定积分为:

z\,\operatorname{erf}(z) + \frac{e^{-z^2}}{\sqrt{\pi}}

逆函数[编辑]

逆误差函数 可由 麦克劳林级数表示:

\operatorname{erf}^{-1}(z)=\sum_{k=0}^\infin\frac{c_k}{2k+1}\left (\frac{\sqrt{\pi}}{2}z\right )^{2k+1}, \,\!

其中, c0 = 1 ,

c_k=\sum_{m=0}^{k-1}\frac{c_m c_{k-1-m}}{(m+1)(2m+1)} = \left\{1,1,\frac{7}{6},\frac{127}{90},\frac{4369}{2520},\ldots\right\}.

即:

\operatorname{erf}^{-1}(z)=\tfrac{1}{2}\sqrt{\pi}\left (z+\frac{\pi}{12}z^3+\frac{7\pi^2}{480}z^5+\frac{127\pi^3}{40320}z^7+\frac{4369\pi^4}{5806080}z^9+\frac{34807\pi^5}{182476800}z^{11}+\cdots\right ).\

逆互补误差函数定义为:

\operatorname{erfc}^{-1}(1-z) = \operatorname{erf}^{-1}(z).

渐近展开[编辑]

互补误差函数的asymptotic expansion英语渐近展开


\mathrm{erfc}(x) = \frac{e^{-x^2}}{x\sqrt{\pi}}\left [1+\sum_{n=1}^\infty (-1)^n \frac{1\cdot3\cdot5\cdots(2n-1)}{(2x^2)^n}\right ]=\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n},\,

其中 (2n – 1)!! 为 双阶数x为实数,该级数对有限 x发散。对于N\in\N ,有

\mathrm{erfc}(x) = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^{N-1} (-1)^n \frac{(2n-1)!!}{(2x^2)^n}+ R_N(x)  \,

其中余项用以 大O符号表示为

R_N(x)=O(x^{-2N+1} e^{-x^2}) as x\to\infty.

余项的精确形式为:

R_N(x):= \frac{(-1)^N}{\sqrt{\pi}}2^{-2N+1}\frac{(2N)!}{N!}\int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt,

对于比较大的 x, 只需渐近展开中开始的几项就可以得到 erfc(x)很好的近似值。(对于不太大的 x ,上文泰勒展开在0处可以快速收敛。)。

连分式展开[编辑]

互补误差函数的连分式展开形式:[3]

\mathrm{erfc}(z) = \frac{z}{\sqrt{\pi}}e^{-z^2} 
\cfrac{a_1}{z^2+
\cfrac{a_2}{1+
\cfrac{a_3}{z^2+
\cfrac{a_4}{1+\dotsb}}}}
\qquad a_1 = 1,\quad a_m = \frac{m-1}{2},\quad m \geq 2.

初等函数近似表达式[编辑]

\operatorname{erf}(x)\approx 1-\frac{1}{(1+a_1x+a_2x^2+a_3x^3+a_4x^4)^4}    (最大误差: 5·10−4)

其中, a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

\operatorname{erf}(x)\approx 1-(a_1t+a_2t^2+a_3t^3)e^{-x^2},\quad t=\frac{1}{1+px}    (最大误差:2.5·10−5)

其中, p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

\operatorname{erf}(x)\approx 1-\frac{1}{(1+a_1x+a_2x^2+\cdots+a_6x^6)^{16}}    (最大误差: 3·10−7)

其中, a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

\operatorname{erf}(x)\approx 1-(a_1t+a_2t^2+\cdots+a_5t^5)e^{-x^2},\quad t=\frac{1}{1+px}    (maximum error: 1.5·10−7)

其中, p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

以上所有近似式适用范围是: x ≥ 0. 对于负的 x, 误差函数是奇函数这一性质得到误差函数的值, erf(x) = −erf(−x).

另有近似式:

\operatorname{erf}(x)\approx \sgn(x) \sqrt{1-\exp\left(-x^2\frac{4/\pi+ax^2}{1+ax^2}\right)}

其中,

a = \frac{8(\pi-3)}{3\pi(4-\pi)} \approx 0.140012.

该近似式在0或无穷的邻域非常准确,x整个定义域上,近似式最大误差小于0.00035,取 a ≈ 0.147 ,最大误差可减小到0.00012。[4]

逆误差函数近似式:

\operatorname{erf}^{-1}(x)\approx \sgn(x) \sqrt{\sqrt{\left(\frac{2}{\pi a}+\frac{\ln(1-x^2)}{2}\right)^2 - \frac{\ln(1-x^2)}{a}}
-\left(\frac{2}{\pi a}+\frac{\ln(1-x^2)}{2}\right)}.

数值近似[编辑]

下式在整个定义域上,最大误差可低至 1.2\cdot10^{-7}[5]

\operatorname{erf}(x)=\begin{cases}
1-\tau & \mathrm{for\;}x\ge 0\\
\tau-1 & \mathrm{for\;}x < 0
\end{cases}

其中,

\begin{array}{rcl}
\tau & = & t\cdot\exp\left(-x^{2}-1.26551223+1.00002368\cdot t+0.37409196\cdot t^{2}+0.09678418\cdot t^{3}\right.\\
 &  & \qquad-0.18628806\cdot t^{4}+0.27886807\cdot t^{5}-1.13520398\cdot t^{6}+1.48851587\cdot t^7\\
 &  & \qquad\left.-0.82215223\cdot t^{8}+0.17087277\cdot t^{9}\right)
\end{array}
t=\frac{1}{1+0.5\,|x|}

与其他函数的关系[编辑]

误差函数本质上与标准正态累积分布函数\Phi是等价的,

\Phi(x) =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^\tfrac{-t^2}{2}\,\mathrm dt = \frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right]=\frac{1}{2}\,\operatorname{erfc}\left(-\frac{x}{\sqrt{2}}\right)

可整理为如下形式:

\begin{align}
\mathrm{erf}(x)  &= 2 \Phi \left ( x \sqrt{2} \right ) - 1 \\
\mathrm{erfc}(x) &= 2 \Phi \left ( - x \sqrt{2} \right )=2\left(1-\Phi \left ( x \sqrt{2} \right)\right).
\end{align}

\Phi的逆函数为正态分位函数英语Quantile function,即概率单位英语Probit函数,


\operatorname{probit}(p) = \Phi^{-1}(p) = \sqrt{2}\,\operatorname{erf}^{-1}(2p-1) = -\sqrt{2}\,\operatorname{erfc}^{-1}(2p).

误差函数为标准正态分布的尾概率Q函数英语Q-function的关系为,


Q(x) =\frac{1}{2} - \frac{1}{2} \operatorname{erf} \left( \frac{x}{\sqrt{2}} \right)=\frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right).

误差函数是米塔-列夫勒函数英语Mittag-Leffler function的特例,可以表示为合流超几何函数英语Confluent hypergeometric function

\mathrm{erf}(x)=
\frac{2x}{\sqrt{\pi}}\,_1F_1\left(\tfrac12,\tfrac32,-x^2\right).

误差函数用正则Γ函数P和 不完全Γ函数表示为

\operatorname{erf}(x)=\operatorname{sgn}(x) P\left(\tfrac12, x^2\right)={\operatorname{sgn}(x) \over \sqrt{\pi}}\gamma\left(\tfrac12, x^2\right).

\scriptstyle\operatorname{sgn}(x) \ 符号函数.

广义误差函数[编辑]

广义误差函数图像 En(x):
灰线: E1(x) = (1 − e −x)/\scriptstyle\sqrt{\pi}
红线: E2(x) = erf(x)
绿线: E3(x)
蓝线: E4(x)
金线: E5(x).

广义误差函数为:

E_n(x) = \frac{n!}{\sqrt{\pi}} \int_0^x e^{-t^n}\,\mathrm dt
=\frac{n!}{\sqrt{\pi}}\sum_{p=0}^\infin(-1)^p\frac{x^{np+1}}{(np+1)p!}\,.

其中,E0(x)为通过原点的直线, \scriptstyle E_0(x)=\frac{x}{e \sqrt{\pi}}E2(x) 即为误差函数 erf(x)。

x > 0时,广义误差函数可以用Γ函数和 不完全Γ函数表示,

E_n(x) = \frac{\Gamma(n)\left(\Gamma\left(\frac{1}{n}\right)-\Gamma\left(\frac{1}{n},x^n\right)\right)}{\sqrt\pi},
\quad \quad
x>0.\

因此,误差函数可以用不完全Γ函数表示为:

\operatorname{erf}(x) = 1 - \frac{\Gamma\left(\frac{1}{2},x^2\right)}{\sqrt\pi}.\

互补误差函数的迭代积分[编辑]

互补误差函数的迭代积分定义为:


\mathrm i^n \operatorname{erfc}\, (z) = \int_z^\infty \mathrm i^{n-1} \operatorname{erfc}\, (\zeta)\;\mathrm d \zeta.\,

可以展开成幂级数:


\mathrm i^n \operatorname{erfc}\, (z) 
=
 \sum_{j=0}^\infty \frac{(-z)^j}{2^{n-j}j! \Gamma \left( 1 + \frac{n-j}{2}\right)}\,,

满足如下对称性质:


\mathrm i^{2m} \operatorname{erfc} (-z)
= - \mathrm i^{2m} \operatorname{erfc}\, (z)
+ \sum_{q=0}^m \frac{z^{2q}}{2^{2(m-q)-1}(2q)! (m-q)!}


\mathrm i^{2m+1} \operatorname{erfc} (-z)
= \mathrm i^{2m+1} \operatorname{erfc}\, (z)
+ \sum_{q=0}^m \frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!}\,.

函数表[编辑]

x erf(x) erfc(x) x erf(x) erfc(x)
0.00 0.0000000 1.0000000 1.30 0.9340079 0.0659921
0.05 0.0563720 0.9436280 1.40 0.9522851 0.0477149
0.10 0.1124629 0.8875371 1.50 0.9661051 0.0338949
0.15 0.1679960 0.8320040 1.60 0.9763484 0.0236516
0.20 0.2227026 0.7772974 1.70 0.9837905 0.0162095
0.25 0.2763264 0.7236736 1.80 0.9890905 0.0109095
0.30 0.3286268 0.6713732 1.90 0.9927904 0.0072096
0.35 0.3793821 0.6206179 2.00 0.9953223 0.0046777
0.40 0.4283924 0.5716076 2.10 0.9970205 0.0029795
0.45 0.4754817 0.5245183 2.20 0.9981372 0.0018628
0.50 0.5204999 0.4795001 2.30 0.9988568 0.0011432
0.55 0.5633234 0.4366766 2.40 0.9993115 0.0006885
0.60 0.6038561 0.3961439 2.50 0.9995930 0.0004070
0.65 0.6420293 0.3579707 2.60 0.9997640 0.0002360
0.70 0.6778012 0.3221988 2.70 0.9998657 0.0001343
0.75 0.7111556 0.2888444 2.80 0.9999250 0.0000750
0.80 0.7421010 0.2578990 2.90 0.9999589 0.0000411
0.85 0.7706681 0.2293319 3.00 0.9999779 0.0000221
0.90 0.7969082 0.2030918 3.10 0.9999884 0.0000116
0.95 0.8208908 0.1791092 3.20 0.9999940 0.0000060
1.00 0.8427008 0.1572992 3.30 0.9999969 0.0000031
1.10 0.8802051 0.1197949 3.40 0.9999985 0.0000015
1.20 0.9103140 0.0896860 3.50 0.9999993 0.0000007
x erfc(x)/2
1 7.86496e−2
2 2.33887e−3
3 1.10452e−5
4 7.70863e−9
5 7.6873e−13
6 1.07599e−17
7 2.09191e−23
8 5.61215e−30
9 2.06852e−37
10 1.04424e−45
11 7.20433e−55
12 6.78131e−65
13 8.69779e−76
14 1.51861e−87
15 3.6065e−100
16 1.16424e−113
17 5.10614e−128
18 3.04118e−143
19 2.45886e−159
20 2.69793e−176
21 4.01623e−194
22 8.10953e−213
23 2.22063e−232
24 8.24491e−253
25 4.15009e−274
26 2.8316e−296
27 2.61855e−319

参考文献[编辑]

  1. ^ Andrews, Larry C.; Special functions of mathematics for engineers
  2. ^ 2.0 2.1 Greene, William H.; Econometric Analysis (fifth edition), Prentice-Hall, 1993, p. 926, fn. 11
  3. ^ Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. Handbook of Continued Fractions for Special Functions. Springer-Verlag. 2008. ISBN 978-1-4020-6948-2. 
  4. ^ Winitzki, Sergei. A handy approximation for the error function and its inverse (PDF). 6 February 2008 [2011-10-03]. 
  5. ^ Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 0-521-43064-X), 1992, page 214, Cambridge University Press.

外部链接[编辑]