量子点

维基百科,自由的百科全书
(重定向自量子點
跳转至: 导航搜索
不同大小的CdSe量子点暴露在紫外光下会发出不同颜色的荧光


量子点(英语:Quantum Dot)是在把激子在三个空间方向上束缚住的半导体纳米结构。这种约束可以归结于静电势(由外部的电极,掺杂,应变,杂质产生),两种不同半导体材料的界面(例如:在自組量子点中),半导体的表面(例如:半导体纳米晶体),或者以上三者的结合。量子点具有分离的量子化的能谱。所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。一个量子点具有少量的(1-100个)整数个的电子、空穴或空穴电子对,即其所带的电量是元电荷的整数倍。

描述[编辑]

Quantum Dots with emission maxima in a 10-nm step are being produced in a kg scale at PlasmaChem GmbH

小的量子点,例如胶体半导体纳米晶,可以小到只有2到10个纳米,这相当于10到50个原子的直径的尺寸,在一个量子点体积中可以包含100到100,000个这样的原子.自组装量子点的典型尺寸在10到50 纳米之间。通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。将10纳米尺寸的三百万个量子点首尾相接排列起来可以达到人类拇指的宽度。

制造[编辑]

量子点的制造方法可以大致分为三类:化学溶液生长法,外延生长法,电场约束法。这三类制造方法也分别对应了三种不同种类的量子点。

化学溶液生长法[编辑]

1981年,瑞士物理学家在水溶液中合成出了硫化镉胶体。[1] 1983年,贝尔实验室科学家Brus证明了改变硫化镉胶体的大小,其激子能量也随之变化。于是,他将这种这种胶体与量子点的概念联系起来,首次提出胶状量子点(colloidal quantum dot)。[2] 1993年,麻省理工学院Bawendi教授领导的科研小组第一次在有机溶液中合成出了大小均一的量子点。[3] 他们将三种氧族元素()溶解在三正辛基氧膦中,而后在200到300摄氏度的有机溶液中与二甲基镉反应,生成相应的量子点材料(硫化镉,硒化镉,碲化镉)。之后人们在此种方法的基础上发明出了许多合成胶状量子点的方法。目前大部分半导体材料都可以用化学溶液生长的方法合成出相应的量子点。

胶状量子点具有制作成本低,产率大,发光效率高(尤其是在可见光和紫外光波段)等优点。但缺点是电导率极低。由于在生产过程中在量子点表面产生有机配体,抵消量子点之间的范德瓦耳斯吸引力,以维持其在溶液中的稳定性。但这层有机配体极大的阻碍了电荷在量子点之间的传输。這點大大降低了奈米微晶在太陽電池和其它的元件上的應用。科学家们曾尝试用各种方法提高电荷在这种材料中的传导率。有代表性的是2003年芝加哥大学的Guyot-Sionnest教授用较短链的氨基物取代原有的长链的有机配体,将量子点间距缩小,并用电化学的方法将电子大量注入量子点内,将电导率提高到了0.01S/cm。[4]

2009年,芝加哥大學的Dmitri Talapin教授開發出一種新的方法,用无机物取代了之前附着在量子点表面的有机配体,能讓個別奈米微晶以強連結的方式相互結合成陣列,克服了前述的問題。Talapin表示,他們的方法提供一個材料設計的多功能的平台,將會對電子元件、光伏元件和熱電(thermoelectrics)元件的製作帶來衝擊。另外,此方法提高全溶液(all-solution)元件製作的可能性,讓此材料在連續式滾筒(roll-to-roll)製程的應用上增添不少吸引力,例如薄膜太陽能電池的製作。 研究人員使用一種名為複合金屬硫化物(metal chalcogenide complex)的材料,來將膠體狀的奈米晶體相互黏合。其配位基較先前使用的有機配位基更為穩定、堅固,而且不會改變奈米晶體的化學性質,還可讓奈米晶體間的電荷轉移更有效率。Talapin等人確實觀察到系統中的導電率相比于以往方法得到的提高了一千倍。目前,該團隊正在研究如何在實際應用上使用奈米晶體的連接技術,並且調查除了金屬硫化物材料外,是否還有其它合適的材料。芝加哥大學已授權Evident Technologies公司在熱電應用上採用此技術。[5]

胶体量子点的另一个热点领域是磁性研究。直到目前,半導體只能在相當低溫下呈現磁性,原因是磁化半導體奈米微粒需要靠激子(exciton)之間的磁性交互作用,但此作用的強度在30 K附近就不足以對抗熱效應。

最近,華盛頓大學的Daniel Gamelin等人製造出掺雜的奈米微晶,它們的量子局限效應(quantum confinement effect)使激子具有很大的磁性交互作用,且生命周期可長達100 ns,比先前的記錄200皮秒(picosecond, ps)高出很多。研究人員利用光將激子注入膠狀奈米微晶中,產生相當強的光誘發磁化(light-induced magnetization)現象。

華大團隊成功的關鍵在於以磁性錳離子取代鎘化硒(CdSe)半導體奈米微晶中的部份鎘離子。這些懸浮在膠狀溶液中的微晶大小不到10 nm,照光時內部產生的強大磁場可將錳離子的自旋完全排正。Gamelin表示,排正的過程非常快,此效應在低溫時非常強,且可維持到室溫。這要歸功於第一次在研究中被觀察到的高溫磁激子(excitonic magnetic polaron, EMP)。Gamelin解釋,由於掺質-載子間的交互作用夠強,EMP穩定性因而增強超過100倍,所以才能在300 K下觀察到磁化效應。

美國科學家開發出一種新型的電子膠(electronic glue),能將個別的奈米晶體(nanocrystals)連接在一起。這種電子膠還能用來製作大面積的電子元件和光伏(photovoltaics)元件。

利用旋轉或浸泡塗佈(dip coating)和噴墨印刷等溶液類製程來製作大面積太陽電池,例如便宜的屋頂太陽能面板,是高成本效益的方法。不過這些技術必須讓半導體溶解,以方便做為墨水(ink)使用。半導體奈米微晶是微小的半導體塊狀物,是製作此類墨水的理想材料。

此外,膠狀半導體量子點與軟式微影術(soft lithography)及噴墨印刷術(in-jet printing)等常見的製程相容。Gamelin認為膠體可望成為奈米科技在各種元件應用上的新工具箱。[6]

外延生长法[编辑]

外延生长法是指在一种衬底材料上长出新的结晶,如果结晶足够小,就会形成量子点。根据生长机理的不同,该方法又可以细分成化学气相沉积法分子束外延法

这种方法生长出的量子点长在另一种半导体上,很容易与传统半导体器件结合。另外由于没有有机配体,外延量子点的电荷传输效率比胶体量子点高,并且能级也比胶体量子点更容易调控。同时,也具有表面的缺陷少等优点。然而,由于化学气相沉积和分子束外延都需要高真空或超高真空,因此相比于胶体量子点,外延量子点的成本较高。

电场约束法[编辑]

电场约束法是指,完全利用调控金属电极的电势使半导体内的能级发生扭曲,形成对载流子的约束。由于量子点所需尺寸在纳米级别,因此金属电极需要用电子束曝光的方法制作。成本最高,产率也最低。但用这种方法制作出的量子点,可以简单通过调控门电压容易控制其能级,载流子的数量和自旋等。由于极高的可控性,这种量子点也最适合于用作量子计算[7]

大规模生产[编辑]

应用[编辑]

  • 量子點LED可以達到接近連續光譜,高演色性的特性;目前人工光源只有高耗能的白熾燈鹵素燈能達到連續光譜的特性,是LED螢光燈無法取代的重要特性;量子點LED可望滿足光線品質及健康較為要求使用者,達到全面淘汰高耗能光源的目標。
  • 量子點顯示技術可以達到更好的色彩顯示特性。
  • “ 量子點螢幕”採用的是麻省理工大學研發的量子點技術, Sony 的Triluminos螢幕正是使用了該技術

另见[编辑]

参考文献[编辑]

  1. ^ Kuppuswamy Kalyanasundaram et al. Cleavage of Water by Visible-Light Irradiation of Colloidal CdS Solutions; Inhibition of Photocorrosion by RuO2. Angew. Chem. Int. Ed. Engl. 1981, 20: 987. doi:10.1002/anie.198109871. 
  2. ^ R. Rossetti et al. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79: 1086–1088. doi:10.1063/1.445834. 
  3. ^ Murray et al. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115: 8706–8715. doi:10.1021/ja00072a025. 
  4. ^ Dong Yu et al. n-type conducting CdSe nanocrystal solids. Science. 2003, 300: 1277–1280. doi:10.1126/science.1084424. 
  5. ^ Kovalenko et al. Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands. Science. 2009, 324: 1417–1420. doi:10.1126/science.1170524. 
  6. ^ Beaulac et al. Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots. Science. 2009, 325: 973–976. doi:10.1126/science.1174419. 
  7. ^ Prati, Enrico; De Michielis, Marco et al. Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology. 2012, 23 (21): 215204. arXiv:1203.4811. Bibcode:2012Nanot..23u5204P. doi:10.1088/0957-4484/23/21/215204. PMID 22552118.