# 阿伏伽德罗常数

$N_A = (6.022 \, 141 \, 29\pm 0.000 \, 000 \, 27)\,\times\,10^{23} \mbox{ mol}^{-1}$[2][4][5]

6.02214129(27)×1023 mol−1
2.73159734(12)×1026 lb-mol−1
1.707248434(77)×1025 oz-mol−1

## 历史

NA = 2.73159757(14)×1026 lb-mol−1 = 1.707248479(85)×1025 oz-mol−1

## 科學上的一般用途

$R = k_{\rm B} N_{\rm A} = 8.314\,472(15)\ {\rm J\,mol^{-1}\,K^{-1}}$

$F = N_{\rm A} e = 96\,485.3383(83)\ {\rm C\,mol^{-1}}$

$1\ {\rm u} = \frac{M_{\rm u}}{N_{\rm A}} = 1.660 \, 538\, 782(83)\times 10^{-24}\ {\rm g}$

## 測量

### 電量分析

$N_{\rm A} = \frac{F}{e}$

$F = \frac{A_{\rm r}M_{\rm u}It}{m}$

### 電子質量測量

$N_{\rm A} = \frac{A_{\rm r}({\rm e})M_{\rm u}}{m_{\rm e}}$

$m_{\rm e} = \frac{2R_{\infty}h}{c\alpha^2}$

### X射線晶體密度法（XRCD）

$N_{\rm A} = \frac{V_{\rm m}}{V_{\rm atom}}$，其中$V_{\rm atom} = \frac{V_{\rm cell}}{n}$，而n則為每一體積為體積Vcell的晶胞內所含的原子數。

$V_{\rm m} = \frac{A_{\rm r}M_{\rm u}}{\rho}$

### 国际阿伏伽德罗协作组织

$h = \frac{c\alpha^2 A_{\rm r}({\rm e})M_{\rm u}}{2R_{\infty} N_{\rm A}}$

## 参考資料

1. ^ International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 4. [1] Electronic version.]
2. ^ 2.0 2.1 Mohr, Peter J.; Taylor, Barry N.; Newell, David B. CODATA Recommended Values of the Fundamental Physical Constants: 2006. Rev. Mod. Phys. 2008, 80: 633–730. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633.
4. ^ International Union of Pure and Applied Chemistry Commission on Atomic Weights and Isotopic Abundances, P.; Peiser, H. S., Atomic Weight: The Name, Its History, Definition and Units (PDF), Pure and Applied Chemistry, 1992, 64 (10): 1535–43 [2006-12-28], doi:10.1351/pac199264101535. 已忽略文本“Pure Appl. Chem. ” (帮助)
5. ^ International Union of Pure and Applied Chemistry Commission on Quantities and Units in Clinical Chemistry, H. P.; International Federation of Clinical Chemistry Committee on Quantities and Units, Glossary of Terms in Quantities and Units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996) (PDF), Pure and Applied Chemistry, 1996, 68 (4): 957–1000 [2006-12-28], doi:10.1351/pac199668040957. 已忽略文本“Pure Appl. Chem. ” (帮助);
6. ^
7. ^ Mohr, Peter J.; Taylor, Barry N.; Newell, David B. CODATA Recommended Values of the Fundamental Physical Constants: 2006. Rev. Mod. Phys. 2008, 80: 633–730. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633.
8. ^ Avogadro, Amadeo, Essai d'une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons, Journal de Physique, 1811, 73: 58–76. English translation.
9. ^ 9.0 9.1 Perrin, Jean, Mouvement brownien et réalité moléculaire, Annales de Chimie et de Physique, 8e Série, 1909, 18: 1–114. Extract in English, translation by Frederick Soddy.
10. ^ Oseen, C.W. (December 10, 1926). Presentation Speech for the 1926 Nobel Prize in Physics.
11. ^ Loschmidt, J., Zur Grösse der Luftmoleküle, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien, 1865, 52 (2): 395–413. English translation.
12. ^ Virgo, S.E., Loschmidt's Number, Science Progress, 1933, 27: 634–49.
13. ^ NIST Introduction to physical constants
14. ^ See, e.g., Kotz, John C.; Treichel, Paul M.; Townsend, John R., Chemistry and Chemical Reactivity 7th, Brooks/Cole, 2008, ISBN 0495387037
15. ^ Resolution 3, 14th General Conference of Weights and Measures (CGPM), 1971.
16. ^ de Bièvre, P.; Peiser, H.S., 'Atomic Weight'—The Name, Its History, Definition, and Units, Pure Appl. Chem., 1992, 64 (10): 1535–43, doi:10.1351/pac199264101535.
17. ^ V.E. Bower; R.S. Davis. The electrochemical equivalent of pure silver - a value for Faraday. J. Res. Natl. Bur. Stand. 1980, 85: 175–191.
18. ^ This account is based on the review in Mohr, Peter J.; Taylor, Barry N. CODATA recommended values of the fundamental physical constants: 1998. J. Phys. Chem. Ref. Data. 1999, 28 (6): 1713–1852. doi:10.1103/RevModPhys.72.351.
19. ^ 19.0 19.1 Mohr, Peter J.; Taylor, Barry N. CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys. 2005, 77 (1): 1–107. Bibcode:2005RvMP...77....1M. doi:10.1103/RevModPhys.77.1.
20. ^ P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants. National Institute of Standards and Technology, Gaithersburg, MD 20899.
21. ^ Ian Robinson 作，郭凯声 译：1千克究竟有多重，载《环球科学》2007年1月号，70-78页，ISSN 1673-5153
22. ^ Mineralogy Database. Unit Cell Formula. 2000-2005 [2007-12-09].
23. ^ P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants. National Institute of Standards and Technology, Gaithersburg, MD 20899. Direct link to value
24. ^ P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: http://physics.nist.gov/constants. National Institute of Standards and Technology, Gaithersburg, MD 20899. Direct link to value
25. ^ Avogadro Project, National Physical Laboratory, [2010-08-19]
26. ^ Leonard, B. P., On the role of the Avogadro constant in redefining SI units for mass and amount of substance, Metrologia, 2007, 44 (1): 82–86, doi:10.1088/0026-1394/44/1/012.
27. ^ 27.0 27.1 Jabbour, Zeina J., Getting Closer to Redefining The Kilogram, Weighing & Measurement Magazine, 2009, (October): 24–26.
28. ^ Becker, Peter, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal, Metrologia, 2003, 40 (6): 366–75, doi:10.1088/0026-1394/40/6/008.
29. ^ Fujii, K.; Waseda, A.; Kuramoto, N.; Mizushima, S.; Becker, P.; Bettin, H.; Nicolaus, A.; Kuetgens, U. et al., Present State of the Avogadro Constant Determination From Silicon Crystals With Natural Isotopic Compositions, IEEE Trans. Instrum. Meas., 2005, 54 (2): 854–59, doi:10.1109/TIM.2004.843101 .
30. ^ Williams, E. R., Toward the SI System Based on Fundamental Constants: Weighing the Electron, IEEE Trans. Instrum. Meas., 2007, 56 (2): 646–50, doi:10.1109/TIM.2007.890591.
31. ^ Becker, P.; Schiel, D.; Pohl, H.-J.; Kaliteevski, A. K.; Godisov, O. N.; Churbanov, M. F.; Devyatykh, G. G.; Gusev, A. V. et al., Large-scale production of highly enriched 28Si for the precise determination of the Avogadro constant, Meas. Sci. Technol., 2006, 17 (7): 1854–60, doi:10.1088/0957-0233/17/7/025 .
32. ^ Devyatykh, G. G.; Bulanov, A. D.; Gusev, A. V.; Kovalev, I. D.; Krylov, V. A.; Potapov, A. M.; Sennikov, P. G.; Adamchik, S. A. et al., Dokl. Akad. Nauk, 2008, 421 (1): 61–64 ; Devyatykh, G. G.; Bulanov, A. D.; Gusev, A. V.; Kovalev, I. D.; Krylov, V. A.; Potapov, A. M.; Sennikov, P. G.; Adamchik, S. A. et al., High-Purity Single-Crystal Monoisotopic Silicon-28 for Precise Determination of Avogadro's Number, Dokl. Chem., 2008, 421 (1): 157–60, doi:10.1134/S001250080807001X .
33. ^ Report of the 11th meeting of the Consultative Committee for Mass and Related Quantities (CCM), International Bureau of Weights and Measures, 17, 2008.
34. ^ 34.0 34.1 Andreas, B.; Azuma, Y.; Bartl, G.; Becker, P.; Bettin, H.; Borys, M.; Busch, I.; Gray, M.; Fuchs, P.; Fujii, K.; Fujimoto, H.; Kessler, E.; Krumrey, M.; Kuetgens, U.; Kuramoto, N.; Mana, G.; Manson, P.; Massa, E.; Mizushima, S.; Nicolaus, A.; Picard, A.; Pramann, A.; Rienitz, O.; Schiel, D.; Valkiers, S.; Waseda, A., An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett., 2011, 106 (3): 030801 (4 pages), Bibcode:2011PhRvL.106c0801A, doi:10.1103/PhysRevLett.106.030801.