雙曲坐標系

维基百科,自由的百科全书
跳转至: 导航搜索
雙曲坐標系

數學裏,雙曲坐標系是一種二維坐標系統。它可以用來表達一個點在二維平面的第一象限的位置。從雙曲坐標 (u,\ v) 變換到直角坐標 (x,\ y)

u = - \frac{1}{2} \log \left( \frac{y}{x} \right)
v = \sqrt{xy}

有時候,參數 u 稱為雙曲角v 稱為幾何平均

映射

x = v e^u
y = v e^{ - u}

這是一個連續函數,但不是一個解析函數

理工科學的應用[编辑]

熱力學裏,定溫過程isothermal process)顯性地跟隨著雙曲路徑,所做的可以解釋為雙曲角的改變。類似地,等壓過程可以描繪出一條雙曲線,在絕對溫度與氣體密度的象限。