马氏规则

维基百科,自由的百科全书
跳转至: 导航搜索

马尔科夫尼科夫规则(Markovnikov's Rule / Markownikoff's Rule,简称马氏规则)是有机化学中一个基于扎伊采夫规则区域选择性经验规则,其内容即:当发生亲电加成反应(如卤化氢烯烃的反应)时,亲电试剂中的正电基团(如氢)总是加在连氢最多(取代最少)的原子上,而负电基团(如卤素)则会加在连氢最少(取代最多)的碳原子上。[1]这个规则是由俄罗斯化学家马尔科夫尼科夫在1870年提出的。[2][3]

遵循马氏规则的反应:丙烯溴化氢

烯烃炔烃卤素卤化氢次卤酸加成的反应外,烯烃的羟汞化反应烷氧汞化-去汞反应也是符合马氏规则的。

马氏规则的原因是亲电加成反应中生成了较为稳定的碳正离子。加上一个H+的碳原子会使其他碳原子上引入一个正电荷,形成一个碳正离子。由于诱导效应超共轭效应取代基(碳上连接的碳或给电子基团)越多的碳正离子越稳定。而加成反应的主要产物会由一个更加稳定的中间体产生。所以烯烃加溴化氢时,溴化氢中的氢总是加在连氢最多的碳上,而卤素基团加在连氢最少的碳上。然而,其它比较不稳定的碳正离子仍然存在,通过它们生成的产物是不符合马氏规则的,通常是反应的副产物。

这个规则可以概括为“氢多加氢”、“富者愈富,而穷者愈穷”、化學中的馬太效應等等:连氢多的碳会得到另外的氢,而连氢少的碳会得到另外的取代基。对于其他不对称亲电试剂也是如此。正电基团加到取代少的碳上,负电基团加到取代多的碳上。

六十年后的認可[编辑]

马尔科夫尼科夫用于证明其规则的一个反应是碘化氢溴乙烯的加成。根据他的规则,卤素原子将会加在已经有一个卤素的碳上。而这个产物(1-碘-1-溴乙烷)是偕卤化物水解英语Geminal halide hydrolysis反应的产物。用潮湿的氧化银处理这个产物则会得到乙醛,证明了产物的结构。

溴乙烯的反应

有人[3]认为,在1869年马尔科夫尼科夫的论文是粗心的,因为他自己没有做很多实验。这个规则仅仅作为了一个四页长的脚注出现在了一篇26页的文章中。因此他的规则经过了大约60年才被广泛认可。

反马氏规则[编辑]

很多反应的区域选择性性质都与马氏规则所做的预测相悖,这些反应称为反马氏规则的反应。氢加到含氢较少的碳原子上,卤素等负电基团加成到了含氢较多的碳原子上。

反马氏规则的一个例子是吸电子基团取代的烯烃与亲电试剂的反应。受诱导效应影响,当烯烃双键碳上连有-CF3吸电子基时,直接与这些基团相连的碳原子带有部分负电荷,它所形成的碳正离子是不稳定的。虽然亲电加成仍然符合电性规律,但是H+会加到靠近吸电子基的双键碳上,生成反马氏规则的产物。

硼氢化-氧化反应也是常见的反马氏规则反应之一。这个反应中硼原子是亲电性的(δ+),倾向于取代较少的双键碳结合,使该碳原子带有部分负电荷,将正电荷留给另外一个双键碳,(部分)形成较稳定的碳正离子。

硼氢化-氧化反应

反马氏规则的反应也包括不以碳正离子作为中间体的反应,比如烯烃和卤化氢的自由基加成反应。以HBr为例,\rm Br\cdot\, 是链增长中与烯烃发生加成的试剂,而只有溴加到取代少的碳上时,才能形成较为稳定的自由基。自由基的稳定性与碳正离子类似,取代越多的自由基越稳定。形成的自由基从另一分子HBr夺取氢,反应的总体结果是氢加到了取代较多的碳原子上。

\rm CH_3CH\!=\!CH_2 + Br\cdot \rightarrow CH_3\dot{C}HCH_2Br\,
\rm CH_3\dot{C}HCH_2Br + HBr\rightarrow CH_3CH_2CH_2Br + Br\cdot\,

反马氏规则的性质也可以发生在炔烃的亲电加成反应上。比如苯乙炔和水的反应,在催化下,会得到苯乙酮,而在配合物的催化下,则会得到异构体苯乙醛[4]

反马氏规则的反应

由于碳正离子会发生重排,故重排后生成的产物也往往不符合马氏规则。下图中单一构型的1四氯化钛催化下重排,会生成外消旋体2a2b[5]

反马氏规则的重排

这些产物可以被解释为:1中羟基离去生成了一个三级碳正离子A,而这个三级碳正离子会重排成二级碳正离子B。氯可以从两边进攻这个碳正离子,从而得到两种差向异构体。

参考资料[编辑]

  1. ^ Additions to Alkenes: Regiochemistry
  2. ^ W. Markownikoff. Ueber die Abhängigkeit der verschiedenen Vertretbarkeit des Radicalwasserstoffs in den isomeren Buttersäuren. Annalen der Pharmacie. 1870, 153 (1): 228–259. doi:10.1002/jlac.18701530204. 
  3. ^ 3.0 3.1 Was Markovnikov’s Rule an Inspired Guess? Peter Hughes 1152 Journal of Chemical Education · Vol. 83 No. 8 August 2006
  4. ^ Highly Active in Situ Catalysts for Anti-Markovnikov Hydration of Terminal Alkynes. Aurélie Labonne, Thomas Kribber, and Lukas Hintermann Org. Lett.; 2006; 8(25) pp 5853 - 5856; (Letter) doi:10.1021/ol062455k
  5. ^ TiCl4 Induced Anti-Markovnikov Rearrangement Mugio Nishizawa, Yumiko Asai, and Hiroshi Imagawa Org. Lett.; 2006; 8(25) pp 5793 - 5796; (Letter) doi:10.1021/ol062337x.