1 + 1 + 1 + 1 + …

维基百科,自由的百科全书
跳转至: 导航搜索
一張表示級數1 + 1 + 1 + 1 + ⋯的圖
級數1 + 1 + 1 + 1 + ⋯
將級數1 + 1 + 1 + 1 + ⋯平滑化
平滑化之後
說明此直線和y軸交點的圖
平滑化後的漸近特性,此直線在y軸的截軸為−1/2.[1]

1 + 1 + 1 + 1 + …,亦寫作 \sum_{n=1}^{\infin} n^0, \sum_{n=1}^{\infin} 1^n\sum_{n=1}^{\infin} 1,是一個發散級數,表示其部份和形成的數列不會收斂。數列1n可以視為公比為1的等比級數。不同於其他公比為有理數的等比級數,此級數不但在實數下不收斂,在某些特定數字p的p進數下也不收斂。若在擴展的實數軸中,因為部份和形成的數列單調遞增且沒有上界,因此級數的值如下

\sum_{n=1}^{\infin} 1 = +\infty \, ,

此發散級數無法用切薩羅求和阿貝爾和求和法求和。

当出现于物理运用时,它也解释为zeta函数正则化英语Zeta_function_regularization,它是黎曼zeta函数在零点的取值。

\zeta(s)=\sum_{n=1}^\infty\frac{1}{n^s}=\frac{1}{1-2^{1-s}}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^s}\,,

上述二個公式在s=0時不成立,必需利用解析连续英语Analytic continuation定义。


\zeta(s) = 2^s\pi^{s-1}\ \sin\left(\frac{\pi s}{2}\right)\ \Gamma(1-s)\ \zeta(1-s)
\!,

用上式求得(假設\Gamma(1) = 1


\zeta(0) = \frac{1}{\pi} \lim_{s \rightarrow 0} \ \sin\left(\frac{\pi s}{2}\right)\ \zeta(1-s) = \frac{1}{\pi} \lim_{s \rightarrow 0} \ \left( \frac{\pi s}{2} - \frac{\pi^3 s^3}{48} + ... \right)\ \left( -\frac{1}{s} + ... \right) = -\frac{1}{2}
\!

以下ζ(s)s = 1時的級數展開:也是這種意義下此級數的和:

1 + 1 + 1 + 1 + · · · = ζ(0) = −12[2]

也可用其他的s值來為其他的級數求和,例如ζ(-1)=1 + 2 + 3 + 4 + ⋯=–1/12,ζ(-2)=1 + 4 + 9 + ... = 0,其通式為

\zeta(-s)=\sum_{n=1}^\infty n^s=1^s + 2^s + 3^s + \ldots = -\frac{B_{s+1}}{s+1}

其中Bk伯努利数[3]

在同一年內,有兩位傑出的物理學家斯拉夫诺夫(A. Slavnov)和F. Yndurain 分别在巴塞羅那作了学术演讲。两场学术演讲的主题不同,但是在這兩個人的介紹當中,都说到了一句令觀眾非常難忘的话:“各位都知道,1 + 1 + 1 + 1 + … = −1⁄2”,某程度意味著「如果觀眾不知道这个,那么继续听下去是没有意义的。」 [4]

參考資料[编辑]