Template:弹性模量

维基百科,自由的百科全书
跳转至: 导航搜索
换算公式
均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。
(\lambda,\,G) (E,\,G) (K,\,\lambda) (K,\,G) (\lambda,\,\nu) (G,\,\nu) (E,\,\nu) (K,\, \nu) (K,\,E) (M,\,G)
K=\, \lambda+ \tfrac{2G}{3} \tfrac{EG}{3(3G-E)} \tfrac{\lambda(1+\nu)}{3\nu} \tfrac{2G(1+\nu)}{3(1-2\nu)} \tfrac{E}{3(1-2\nu)} M - \tfrac{4G}{3}
E=\, \tfrac{G(3\lambda + 2G)}{\lambda + G} \tfrac{9K(K-\lambda)}{3K-\lambda} \tfrac{9KG}{3K+G} \tfrac{\lambda(1+\nu)(1-2\nu)}{\nu} 2G(1+\nu)\, 3K(1-2\nu)\, \tfrac{G(3M-4G)}{M-G}
\lambda=\, \tfrac{G(E-2G)}{3G-E} K-\tfrac{2G}{3} \tfrac{2 G \nu}{1-2\nu} \tfrac{E\nu}{(1+\nu)(1-2\nu)} \tfrac{3K\nu}{1+\nu} \tfrac{3K(3K-E)}{9K-E} M - 2G\,
G=\, \tfrac{3(K-\lambda)}{2} \tfrac{\lambda(1-2\nu)}{2\nu} \tfrac{E}{2(1+\nu)} \tfrac{3K(1-2\nu)}{2(1+\nu)} \tfrac{3KE}{9K-E}
\nu=\, \tfrac{\lambda}{2(\lambda + G)} \tfrac{E}{2G}-1 \tfrac{\lambda}{3K-\lambda} \tfrac{3K-2G}{2(3K+G)} \tfrac{3K-E}{6K} \tfrac{M - 2G}{2M - 2G}
M=\, \lambda+2G\, \tfrac{G(4G-E)}{3G-E} 3K-2\lambda\, K+\tfrac{4G}{3} \tfrac{\lambda(1-\nu)}{\nu} \tfrac{2G(1-\nu)}{1-2\nu} \tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)} \tfrac{3K(1-\nu)}{1+\nu} \tfrac{3K(3K+E)}{9K-E}

胡克定律中的刚度矩阵(按Voigt notation为9乘9或6乘6)可由同类且各向同性材料的任意两个参数来确定,表中列出了可能的换算关系。

参考文献[编辑]

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4