催化

维基百科,自由的百科全书

催化(catalysis)或催化作用,是利用催化剂参与,改变化学反应速率而不影响化学平衡的作用。广泛发生于无机物反应、有机物反应、生物体内反应。

许多化学工业要利用催化作用来获得需要的反应速率。催化也是一种化工单元过程,催化剂本身在反应中不会被消耗,但催化剂会改变反应速率,一催化剂亦可能参与复数的催化反应。正催化剂可加速反应;负催化剂或抑制剂则会与反应物反应进而降低化学反应。可提高催化剂活性的物质称为促进剂;降低催化剂活性者则称为催化毒

相较于未催化的反应,同温度的催化反应拥有较低的活化能。催化剂可以借由结合反应物达到极化的效果,如酸催化剂之于羰基化合物的合成;催化剂也可产生非自然的反应中间物,如以四氧化锇催化烯烃的双羟基化中产生的锇酸盐酯;催化剂亦可造成反应物的裂解,如制氢时产生的单原子氢。

很多物质都可以做催化剂,在无机物反应中,通常利用金属或金属化合物作为催化剂,在有机物反应中多用有性的蛋白质分子——作为催化剂,生物体内许多化学反应都依赖酶来进行的。

催化反应可以发生在均相催化多相催化中,也可以发生在复相催化中:

均相催化反应[编辑]

均相催化反应中,催化剂和反应物处于同一相中,一般发生在液体状态中。催化剂可与反应物生成中间体,使反应机理转变为另一个拥用较低活化能的新机理,故反应速率得以提升。

过二硫酸根离子(S2O82-)与碘离子(I-)的反应为例:

S2O82-(aq) + 2 I- = 2 SO42-(aq) +I2 (aq)

加入铁(III)离子可催化以上反应,机理如下:

又例如以Δ代表催化剂,反应过程如下:

所以最终结果为:

本来A和B之间不能直接反应或反应速率太慢,Δ的存在促进了A和B之间的反应,生成了新的产品K。

多相催化反应[编辑]

多相反应中催化剂一般是固体,催化反应按照下列步骤进行:

  1. 扩散-反应物扩散到催化剂的表面;
  2. 吸附-反应物被吸附到催化剂表面;
  3. 反应-被吸附的反应物在催化剂表面解离各键,并因此发生反应,生成新产物;
  4. 脱附-新的产物从催化剂表面解吸。
  5. 扩散-产物从催化剂表面扩散

催化剂的催化作用原理较复杂,不同的催化剂的作用原理不尽相同,酶的催化作用更为复杂,而且具有高度的选择性,只能对某种特定的反应进行催化,在食品工业和药物合成中,经常利用酶来进行催化。另外,由于d栋元素原子具有不同数目的价电子及低能阶的空电子能阶,故能使反应物吸附在d栋金属表面。因此在一些反应中,包括以哈柏法生产氨气,d栋金属可以提供一个适当的金属表面,进行多相催化反应。此外,二氧化锰催化过氧化氢分解成水之反应亦为多相催化作用。

复相催化反应[编辑]

复相催化是一独立的化学反应。它兼有均相催化的温度和多相催化的速度。同时具有可控的方向性。对固液气均可进行催化且用量极少。在反应时,全方位的进行催化,致使反应速率加快数千倍。由于催化能力倍增,使其可从碳水化合物中移动氢氧,而这正是把工业和生物废弃物“一步法”转化为标准汽柴油的科学基础。列如:

二氧化碳 + 废塑料轮胎 --> 汽柴油+可燃气+炭黑

既解决了空中环境堵塞,又将地面废弃物转化为能源;

煤+地面农、林、牧、城市生活废弃物、城市工业废弃物 --> 汽柴油+可燃气+炭黑

既解决了地面的污染问题,地面生态通道的堵塞,和煤排出的二氧化碳问题,又将煤、地面废弃物转化为急需的汽、柴油基础油,它产生的可燃气体和天然气的低碳排放是一个水平:排出的可燃气体,碳排放量为16%,天然气的碳排放量12%

优化化石能源的产业结构。用先进的催化技术和仿生能源的工艺方法,将 炼油工业转化为资源节约型的工业结构。

石油 --> 汽柴油+可燃气+炭黑

以高科技手段,打破垄断,形成资源节约型产业,把地下化石能源成本降下来。 相比于传统炼油,设备成本为(1/5) 生产成本为(1/2)且更多的产出来源于石油中的生物质

复相催化具有广泛的用途。它可替代多相和均相催化。同时,它也会从本质上改变燃烧动力,因而对动能机械影响很大,像飞机,火车,轮船及其它大型运输工具。因为它可解决加速度和长距离巡航问题。另外,它可降低多种物质的临界点。这将极大的有利于核反应炉,超临界萃取,地下油砂的开采。

氧化还原催化反应[编辑]

通过金属氧化物金属元素的变价(氧化还原循环)来加速反应速率的催化作用。

参考[编辑]


外部链接[编辑]