线性映射

本页使用了标题或全文手工转换
维基百科,自由的百科全书
线性代数

向量 · 向量空间 · 基底  · 行列式  · 矩阵

线性映射英语:linear map)是于向量空间之间,保持向量加法和标量乘法的函数,所以线性映射也是向量空间间的同态[1]

线性算子英语:linear operator)与线性转换英语:linear transformation)是与线性映射相关的惯用名词,但其实际意义存在许多分歧,详见相关名词一节。

正式定义[编辑]

定义 — 
都是在 上定义的向量空间,若函数 对任二向量 与任何标量 ,满足:

可加性:
齐次性:

被称为是线性映射

这等价于要求 对任意向量 和任意标量 须满足

若要特别强调标量所在的母集合是域 ,会特称 -线性映射。如对复数共轭运算 -线性映射(因为取实数为标量才会有齐次性)。

线性泛函[编辑]

域本身就是定义在自己之上(也就是以自己为标量母集合)的向量空间,所以如 的线性映射被特称为线性泛函。线性泛函分析就是不预先假设基底存在性的高等线性代数(也就是直观来说,无穷维或是不可数维度的向量空间)。线性泛函分析是泛函分析最成熟的分支,但泛函分析最早研究的是有关向量空间上的实值函数(它们一般是非线性映射)的变分问题。

注意事项[编辑]

  • 本条目所定义的“线性”与“函数图像是条直线”间有根本的区别(可见下文的举例说明),请勿混淆。
  • 线性映射可以复合,但一般不能随便交换复合的先后顺序;如“给函数乘上”和“对函数进行微分”都是线性算子(可见下文的举例说明),但对一个函数“先乘上再进行微分”和“先进行微分再乘上”所得到的结果一般是不一样的。[2]
  • 由“可加性”不可能推导出“齐次性”,由“齐次性”也不可能推导出“可加性”,所以这2条件对于“线性”的定义缺一不可。[3]


相关名词[编辑]

线性变换线性算子与本条目的线性映射密切相关,但不同作者对它们有不同的定义。而这种定义分歧的根源在于,如 这样,定义域和值域落在同个向量空间的特殊线性映射,有些人为了凸显而予之不同的称呼。

比如Axler和龚昇就称这种特殊线性映射为线性算子[4][5],但另一方面将线性映射线性变换视为同义词;李尚志则将这种特殊线性映射称为线性变换[6];而泛函分析的书籍一般将三者都视为同义词[7][8]

但为清晰起见,本条目一律以线性映射称呼,其他的细节都以函数的惯用符号表达。

例子[编辑]

  • 对于实数,映射不是线性的。
  • 如果矩阵,则定义了一个从的线性映射,这个映射将列向量映射到列向量。反过来说,在有限维向量空间之间的任何线性映射都可以用这种方式表示;参见后面章节。
  • 积分生成从在某个区间上所有可积分实函数的空间到的线性映射。这只是把积分的基本性质(“积分的可加性”和“可从积分号内提出常数倍数”)用另一种说法表述出来。[9]
  • 微分是从所有可微分函数的空间到所有函数的空间的线性映射。[9]
  • “给函数乘上”是一种线性映射。[9]是由全体连续函数所组成的函数空间,则此运算也是空间中的算子。
  • 后向移位(backward shift)运算是一种线性映射。即把无穷维向量的第一个坐标划去:[9]
  • 如果为在域上的有限维向量空间,则从线性映射到在后面所描述的矩阵的函数也是线性映射。[9]
  • 一次函数仅在时才是一种线性变换。容易验证一次函数仅在时,线性变换的基本性质才能成立。(尽管时其图像也是一条直线,但这里所说的线性不是指函数图像为直线。)同理,平移变换一般也不是线性变换(平移距离为零时才是线性变换)。[10][11]

矩阵[编辑]

若向量空间 都是有限的,且它们定义在同个标量 上,则从 的所有线性映射可以用矩阵表示。反之亦然,下面将详述如何表示。

以矩阵表示线性映射[编辑]

假设 是个线性映射,且

分别是 基底

根据基底 的基本定义,对于每个基向量 ,存在唯一一组标量 使得

直观上,标量 就是对基向量 的作用结果 ,在基底 下的诸分量。

现在任取一个 里的向量 ,因为基底 的基本定义,存在唯一一组标量 使得

这样根据求和符号的性质,可以得到

然后考虑到 ,所以根据基底 的基本定义,存在唯一一组标量 使得

因为这样的标量 是唯一存在的,所以对

考虑到矩阵乘法的定义,上式可以改写为

也就是说,只要知道 下的诸分量 ,任意向量 的作用结果 ,都可以表示为矩阵 行向量 的乘积。更直观的来说,矩阵 就是把 的诸分量沿column)摆放所构成的。

由上面的推导可以知道,不同的基底 下,矩阵 不同,为了强调这点,也会将矩阵 记为

来强调这种关联性。

,在同个向量空间 通常没有取不同基底的必要,那上面的推导可以在 的前提下进行。这时上式可以进一步简写为

以线性映射表示矩阵[编辑]

若有由 个标量构成的矩阵 ,如果取

其中

因为矩阵乘法只有唯一的结果,上面的定义的确符合函数定义的基本要求。然后考虑 都可以视为定义在同个标量 上的向量空间,而且矩阵乘法是线性的,所以上述定义的函数 的确符合线性映射的基本定义。

用矩阵表示线性映射的原因和好处[编辑]

  1. 把线性映射写成具体而简明的2维数阵形式后,就成了一种矩阵。进而由线性映射的加法规则和复合规则来分别定义矩阵的加法规则和乘法规则是很自然的想法。[12]当空间的基变化(坐标系变换)时,线性映射的矩阵也会有规律地变化。在特定的基上研究线性映射,就转化为对矩阵的研究。利用矩阵的乘法,可以把一些线性系统的方程表达得更紧凑(比如把线性方程组用矩阵表达和研究),也使几何意义更明显。矩阵可以分块计算,可以通过适当的变换以“解耦”(把复杂的变换分解为一些简单变换的组合)。要求出一个线性变换的,先写出其矩阵形式几乎是不可避免的一个步骤。
  2. 遇到这样的加上了1个常量的非线性映射可以通过增加1个维度的方法,把变换映射写成2×2维的方形矩阵形式,从而在形式上把这一类特殊的非线性映射转化为线性映射。这个办法也适用于处理在高维线性变换上多加了一个常向量的情形。这在计算机图形学和刚体理论(及其相关机械制造机器人学)中都有大量应用。
  3. 对角化的矩阵具有诸多优点。线性映射在写成矩阵后可以进行对角化(不能对角化的矩阵可以化简成接近对角矩阵的准对角矩阵),从而可以获得对角化矩阵拥有的独特优势(极大地简化乘法运算,易于分块,容易看出与基的选取无关的不变量)。比如,对于作用于同一个空间的可对角化的方形矩阵,要求出自乘次后的结果,一个一个慢慢地乘是很麻烦的事情。而知道对角化技巧的人会发现,在将这矩阵对角化后,其乘法运算会变得格外简单。实际应用中有很多有意思的问题或解题方法都会涉及到矩阵自乘n次的计算,如1阶非齐次线性递推数列通项公式的线性代数求解法和马尔可夫链的极限状态(极限分布)的求解。线性代数及矩阵论的一个主要问题就是寻找可使矩阵对角化的条件或者可使矩阵化简到含很多个0的条件[13],以便简化计算(这是主要原因之一)。

线性映射的矩阵的例子[编辑]

二维空间的线性变换的一些特殊情况有:

  • 逆时针旋转90度:
  • 逆时针旋转[14]
  • 针对y反射
  • 在所有方向上放大2倍:
  • 水平错切
  • 挤压
  • y投影

从给定线性映射构造新的线性映射[编辑]

两个线性映射的复合映射是线性的:如果是线性的,则也是线性的。

若线性映射可逆,则该线性映射的也是线性映射。

如果是线性的,则它们的和也是线性的(这是由定义的)。

如果是线性的,而a是基础域K的一个元素,则定义自 (af)(x) = a (f(x))的映射af也是线性的。

所以从的线性映射的集合自身形成在上的向量空间,有时指示为。进一步的说,在的情况中,这个向量空间(指示为)是在映射复合下的结合代数,因为两个线性映射的复合再次是线性映射,所以映射的复合总是结合律的。

给定有限维的情况,如果基已经选择好了,则线性映射的复合对应于矩阵乘法,线性映射的加法对应于矩阵加法,而线性映射与标量的乘法对应于矩阵与标量的乘法。

自同态线性映射[编辑]

自同态的线性映射在泛函分析和量子力学中都有很重要的地位。按前文约定,我们用“线性算子”来简称它。(注意泛函分析中所说的“线性算子”不一定是自同态(endomorphism)映射,但我们为了照顾不同书籍的差异以及叙述的方便,暂用“线性算子”来称呼这种自同态。)

自同态和自同构[编辑]

自同态是一个数学对象到它本身的保持结构的映射(同态),例如群的自同态则是群同态。对于向量空间,其自同态是线性算子;所有这种自同态的集合与如上定义的加法、复合和标量乘法一起形成一个结合代数,带有在域上的单位元(特别是一个环)。这个代数的乘法单位元是恒等映射

的自同态也刚好是同构则称之为自同构。两个自同构的复合再次是自同构,所以的所有的自同构的集合形成一个自同构群可表为。因为自同构正好是那些在复合运算下拥有逆元的自同态,所以也就是在环中的可逆元群

如果之维度有限同构于带有在中元素的所有矩阵构成的结合代数,且的自同态群同构于带有在中元素的所有可逆矩阵构成的一般线性群

量子力学应用[编辑]

核、像和秩-零化度定理[编辑]

如果是线性的,我们定义(或称值域)为

子空间,而的子空间。下面的叫做秩-零化度定理的维度公式经常是有用的:

的数也叫做“的秩”(rank)并写为,有时写为的数也叫做“的零化度”(nullity)并写为。如果是有限维的,基已经选择好并且被表示为矩阵,则的秩和零化度分别等于矩阵零化度

推广[编辑]

多重线性映射是线性映射最重要的推广,它也是格拉斯曼代数张量分析的数学基础。其特例为双线性映射

参见[编辑]

脚注与参考资料[编辑]

脚注[编辑]

  1. ^ Lax 2010,第7页(位于第2章“线性映射”第1节“线性映射生成的代数”)。
  2. ^ Axler 2009,第41页(位于第3章“线性映射”第1节“定义与例子”)。
  3. ^ Axler 2009,第59页(位于第3章“线性映射”末尾习题旁的说明)。
  4. ^ 见龚昇《线性代数五讲》第1讲第10页。
  5. ^ Axler 2009,第38页(位于第3章“线性映射”第1节“定义与例子”)。
  6. ^ 李尚志. 第6章“线性变换”第4节“线性变换”. 线性代数 第1版. 高等教育出版社. 2006: 326. ISBN 7-04-019870-3. 则V到自身的线性映射称为V的线性变换(linear transformation)。 
  7. ^ А·Н·柯尔莫哥洛夫,佛明(С. В. Фомин). 第4章“线性泛函与线性算子”第5节“线性算子”. Элементы теории функций и функционального анализа [函数论与泛函分析初步]. 俄罗斯数学教材选译. 段虞荣 (翻译),郑洪深 (翻译),郭思旭 (翻译) 原书第7版,中译本第2版. 高等教育出版社. 2006年: 162. ISBN 7-04-018407-9. 
  8. ^ Lax 2010,第131页(位于第15章“有界线性映射”的开头部分)。原文为“线性映射也称为线性算子或线性变换”。
  9. ^ 9.0 9.1 9.2 9.3 9.4 9.5 Axler 2009,第38-39页(位于第3章“线性映射”第1节“定义与例子”)。
  10. ^ Artin 2010,第156页。(位于第6章“Symmetry”第1节“ Symmetry of the Plane Figures”)
  11. ^ Walter Rudin. 第1章“Topological Vector Spaces”中的“Linear mappings”一节. Functional Analysis [泛函分析]. Higher mathematics series. McGraw-Hill Book Company. 1973: 13. 
  12. ^ Axler 2009,第51页(位于第3章“线性映射”第3节“线性映射的矩阵”)。
  13. ^ Axler 2009,第82页(位于第5章“本征值与本征向量”第3节“上三角矩阵”)。
  14. ^ 其证明只需要用到三角函数的基础知识,在网上很容易找到证明过程。也可参见Feynman第11章“Vectors”第3节“Rotations”。

脚注所引资料[编辑]

其它参考资料[编辑]