半導體材料

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

半導體材料是一類固體材料,其導電性介於導體絕緣體之間,屬於半導體

發展[編輯]

  • 1833年,英國的法拉第發現硫化銀是半導體材料,因為它的電阻隨著溫度上升而降低。
  • 1874年,德國的布勞恩注意到硫化物的電導率與所加電壓的方向有關,這就是半導體的整流作用。
  • 1947年12月23日,巴丁布拉坦進一步使用點接觸電晶體製作出一個語音放大器,電晶體正式發明。
  • 1958年9月12日,美國的基爾比,細心地切了一塊作為電阻,再用一塊pn接面做為電容,製造出一個震盪器電路。

分類[編輯]

以原料分為:

列表[編輯]

半導體材料列表
元素 化學式 能隙 (eV) 直接帶隙和間接帶隙
IV 1 Si 1.12[1][2] 間接帶隙
IV 1 Germanium Ge 0.67[1][2] 間接帶隙
IV 1 Material properties of diamond英語Material properties of diamond C 5.47[1][2] 間接帶隙
IV 1 , α-Sn Sn 0[3][4] 半金屬 (能帶理論)
IV 2 碳化硅, 3C-SiC SiC 2.3[1] 間接帶隙
IV 2 碳化硅, 4H-SiC SiC 3.3[1] 間接帶隙
IV 2 碳化硅, 6H-SiC英語6H-SiC SiC 3.0[1] 間接帶隙
VI 1 , 硫的同素異形體 S8 2.6[5]
VI 1 Se 1.83 - 2.0[6] 間接帶隙
VI 1 Se 2.05 間接帶隙
VI 1 Te 0.33[7]
III-V 2 氮化硼, cubic BN 6.36[8] 間接帶隙
III-V 2 氮化硼, hexagonal BN 5.96[8] quasi-direct
III-V 2 氮化硼 BN 5.5[9]
III-V 2 磷化硼 BP 2.1[10] 間接帶隙
III-V 2 砷化硼 BAs 1.82 直接帶隙
III-V 2 砷化硼 B12As2 3.47 間接帶隙
III-V 2 氮化鋁 AlN 6.28[1] 直接帶隙
III-V 2 磷化鋁 AlP 2.45[2] 間接帶隙
III-V 2 砷化鋁 AlAs 2.16[2] 間接帶隙
III-V 2 銻化鋁 AlSb 1.6/2.2[2] 直接帶隙/direct
III-V 2 氮化鎵 GaN 3.44[1][2] 直接帶隙
III-V 2 磷化鎵 GaP 2.26[1][2] 間接帶隙
III-V 2 Gallium arsenide英語Gallium arsenide GaAs 1.42[1][2] 直接帶隙
III-V 2 銻化鎵 GaSb 0.73[1][2] 直接帶隙
III-V 2 氮化銦 InN 0.7[1] 直接帶隙
III-V 2 磷化銦 InP 1.35[1] 直接帶隙
III-V 2 砷化銦 InAs 0.36[1] 直接帶隙
III-V 2 銻化銦 InSb 0.17[1] 直接帶隙
II-VI 2 硒化鎘 CdSe 1.74[2] 直接帶隙
II-VI 2 硫化鎘 CdS 2.42[2] 直接帶隙
II-VI 2 碲化鎘 CdTe 1.49[2] 直接帶隙
II-VI 2 氧化鋅 ZnO 3.37[2] 直接帶隙
II-VI 2 硒化鋅 ZnSe 2.7[2] 直接帶隙
II-VI 2 硫化鋅 ZnS 3.54/3.91[2] 直接帶隙
II-VI 2 碲化鋅 ZnTe 2.3[2] 直接帶隙
I-VII 2 氯化亞銅 CuCl 3.4[11] 直接帶隙
I-VI 2 Copper sulfide英語Copper sulfide Cu2S 1.2[10] 間接帶隙
IV-VI 2 硒化鉛 PbSe 0.26[7] 直接帶隙
IV-VI 2 硫化鉛 PbS 0.37[12]
IV-VI 2 碲化鉛 PbTe 0.32[1]
IV-VI 2 硫化亞錫 SnS 1.3/1.0[13] 直接帶隙/間接帶隙
IV-VI 2 二硫化錫 SnS2 2.2[14]
IV-VI 2 碲化亞錫 SnTe 0.18
IV-VI 3 Lead tin telluride英語Lead tin telluride Pb1−xSnxTe 0-0.29
V-VI 2 碲化鉍 Bi2Te3 0.13[1]
II-V 2 磷化鎘 Cd3P2 0.5[15]
II-V 2 砷化鎘 Cd3As2 0
II-V 2 磷化鋅 Zn3P2 1.5[16] 直接帶隙
II-V 2 二磷化鋅 ZnP2 2.1[17]
II-V 2 砷化鋅 Zn3As2 1.0[18]
II-V 2 銻化鋅 Zn3Sb2
2 二氧化鈦, 銳鈦礦 TiO2 3.20[19] 間接帶隙
2 二氧化鈦, 金紅石 TiO2 3.0[19] 直接帶隙
2 二氧化鈦, 板鈦礦 TiO2 3.26[19]
2 氧化亞銅 Cu2O 2.17[20]
2 氧化銅 CuO 1.2
2 二氧化鈾 UO2 1.3
2 二氧化錫 SnO2 3.7
3 鈦酸鋇 BaTiO3 3
3 鈦酸鍶 SrTiO3 3.3
3 鈮酸鋰 LiNbO3 4
V-VI 2 monoclinic 二氧化釩 VO2 0.7[21] 光學帶隙
2 碘化鉛 PbI2 2.4[22]
2 二硫化鉬 MoS2 1.23 eV (2H)[23] 間接帶隙
2 Gallium(II) selenide英語Gallium(II) selenide GaSe 2.1 間接帶隙
2 硒化銦 InSe 1.26-2.35 eV[24] 直接帶隙 (2D間接帶隙)
2 硫化亞錫 SnS >1.5 eV 直接帶隙
2 硫化鉍 Bi2S3 1.3[1]
Magnetic, diluted (DMS)[25] 3 Gallium manganese arsenide英語Gallium manganese arsenide GaMnAs
Magnetic, diluted (DMS) 3 Lead manganese telluride PbMnTe
4 Lanthanum calcium manganate La0.7Ca0.3MnO3
2 氧化亞鐵 FeO 2.2 [26]
2 一氧化鎳 NiO 3.6–4.0 直接帶隙[27][28]
2 Europium(II) oxide英語Europium(II) oxide EuO
2 硫化亞銪 EuS
2 溴化鉻 CrBr3
其它 3 Copper indium selenide英語Copper indium selenide, CIS CuInSe2 1 直接帶隙
其它 3 Silver gallium sulfide AgGaS2
其它 3 Zinc silicon phosphide ZnSiP2 2.0[10]
其它 2 三硫化二砷 雌黃 As2S3 2.7[29] 直接帶隙
其它 2 硫化砷 雄黃 As4S4
其它 2 Platinum silicide英語Platinum silicide PtSi
其它 2 碘化鉍 BiI3
其它 2 碘化汞 HgI2
其它 2 溴化亞鉈 TlBr 2.68[30]
其它 2 硫化銀 Ag2S 0.9[31]
其它 2 Iron disulfide英語Iron disulfide FeS2 0.95[32]
其它 4 Copper zinc tin sulfide英語Copper zinc tin sulfide, CZTS Cu2ZnSnS4 1.49 直接帶隙
其它 4 Copper zinc antimony sulfide英語Copper zinc antimony sulfide, CZAS Cu1.18Zn0.40Sb1.90S7.2 2.2[33] 直接帶隙
其它 3 Copper tin sulfide, CTS Cu2SnS3 0.91[10] 直接帶隙

合金表[編輯]

半導體材料合金列表
元素 材料 化學式 能隙 (eV) 直接帶隙和間接帶隙
IV-VI 3 Lead tin telluride英語Lead tin telluride Pb1−xSnxTe 0 0.29
IV 2 矽鍺 Si1−xGex 0.67 1.11[1] 直接帶隙/間接帶隙
IV 2 Silicon-tin英語Silicon-tin Si1−xSnx 1.0 1.11 間接帶隙
III-V 3 Aluminium gallium arsenide英語Aluminium gallium arsenide AlxGa1−xAs 1.42 2.16[1] 直接帶隙/間接帶隙
III-V 3 Indium gallium arsenide英語Indium gallium arsenide InxGa1−xAs 0.36 1.43 直接帶隙
III-V 3 磷化銦鎵 InxGa1−xP 1.35 2.26 直接帶隙/間接帶隙
III-V 3 Aluminium indium arsenide英語Aluminium indium arsenide AlxIn1−xAs 0.36 2.16 直接帶隙/間接帶隙
III-V 3 Aluminium gallium antimonide英語Aluminium gallium antimonide AlxGa1−xSb 0.7 1.61 直接帶隙/間接帶隙
III-V 3 Aluminium indium antimonide英語Aluminium indium antimonide AlxIn1−xSb 0.17 1.61 直接帶隙/間接帶隙
III-V 3 Gallium arsenide nitride GaAsN
III-V 3 Gallium arsenide phosphide英語Gallium arsenide phosphide GaAsP 1.43 2.26 直接帶隙/間接帶隙
III-V 3 Aluminium arsenide antimonide英語Aluminium arsenide antimonide AlAsSb 1.61 2.16 間接帶隙
III-V 3 Gallium arsenide antimonide英語Gallium arsenide antimonide GaAsSb 0.7 1.42[1] 直接帶隙
III-V 3 Aluminium gallium nitride英語Aluminium gallium nitride AlGaN 3.44 6.28 直接帶隙
III-V 3 Aluminium gallium phosphide英語Aluminium gallium phosphide AlGaP 2.26 2.45 間接帶隙
III-V 3 Indium gallium nitride英語Indium gallium nitride InGaN 2 3.4 直接帶隙
III-V 3 Indium arsenide antimonide英語Indium arsenide antimonide InAsSb 0.17 0.36 直接帶隙
III-V 3 Indium gallium antimonide英語Indium gallium antimonide InGaSb 0.17 0.7 直接帶隙
III-V 4 Aluminium gallium indium phosphide英語Aluminium gallium indium phosphide AlGaInP 直接帶隙/間接帶隙
III-V 4 Aluminium gallium arsenide phosphide AlGaAsP
III-V 4 Indium gallium arsenide phosphide英語Indium gallium arsenide phosphide InGaAsP
III-V 4 Indium gallium arsenide antimonide英語Indium gallium arsenide antimonide InGaAsSb
III-V 4 Indium arsenide antimonide phosphide英語Indium arsenide antimonide phosphide InAsSbP
III-V 4 Aluminium indium arsenide phosphide AlInAsP
III-V 4 Aluminium gallium arsenide nitride AlGaAsN
III-V 4 Indium gallium arsenide nitride InGaAsN
III-V 4 Indium aluminium arsenide nitride InAlAsN
III-V 4 Gallium arsenide antimonide nitride GaAsSbN
III-V 5 Gallium indium nitride arsenide antimonide GaInNAsSb
III-V 5 Gallium indium arsenide antimonide phosphide英語Gallium indium arsenide antimonide phosphide GaInAsSbP
II-VI 3 碲化鋅鎘, CZT CdZnTe 1.4 2.2 直接帶隙
II-VI 3 Mercury cadmium telluride英語Mercury cadmium telluride HgCdTe 0 1.5
II-VI 3 Mercury zinc telluride英語Mercury zinc telluride HgZnTe 0 2.25
II-VI 3 Mercury zinc selenide HgZnSe
II-V 4 Zinc cadmium phosphide arsenide英語Zinc cadmium phosphide arsenide (Zn1−xCdx)3(P1−yAsy)2[34] 0[35] 1.5[36]
其它 4 Copper indium gallium selenide英語Copper indium gallium selenide, CIGS Cu(In,Ga)Se2 1 1.7 直接帶隙

參見[編輯]

參考文獻[編輯]

  1. ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 NSM Archive - Physical Properties of Semiconductors. www.ioffe.ru. [2010-07-10]. (原始內容存檔於2015-09-28). 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Safa O. Kasap; Peter Capper. Springer handbook of electronic and photonic materials. Springer. 2006: 54,327. ISBN 978-0-387-26059-4. 
  3. ^ S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). Interband magnetoreflection of α-Sn.
  4. ^ Tin, Sn. www.matweb.com. 
  5. ^ Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. Journal of Physics and Chemistry of Solids. 1986, 47 (2): 143. Bibcode:1986JPCS...47..143A. doi:10.1016/0022-3697(86)90123-X. 
  6. ^ Todorov, T. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material. Nature Communications. 2017, 8 (1): 682. Bibcode:2017NatCo...8..682T. PMC 5613033可免費查閱. PMID 28947765. S2CID 256640449. doi:10.1038/s41467-017-00582-9. 
  7. ^ 7.0 7.1 Dorf, Richard. The Electrical Engineering Handbook. CRC Press. 1993: 2235–2236. ISBN 0-8493-0185-8. 
  8. ^ 8.0 8.1 Evans, D A; McGlynn, A G; Towlson, B M; Gunn, M; Jones, D; Jenkins, T E; Winter, R; Poolton, N R J. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy (PDF). Journal of Physics: Condensed Matter. 2008, 20 (7): 075233. Bibcode:2008JPCM...20g5233E. S2CID 52027854. doi:10.1088/0953-8984/20/7/075233. hdl:2160/612可免費查閱. 
  9. ^ Boron nitride nanotube. www.matweb.com. 
  10. ^ 10.0 10.1 10.2 10.3 Madelung, O. Semiconductors: Data Handbook. Birkhäuser. 2004: 1. ISBN 978-3-540-40488-0. 
  11. ^ Claus F. Klingshirn. Semiconductor optics. Springer. 1997: 127. ISBN 978-3-540-61687-0. 
  12. ^ Lead(II) sulfide. www.matweb.com. 
  13. ^ Patel, Malkeshkumar; Indrajit Mukhopadhyay; Abhijit Ray. Annealing influence over structural and optical properties of sprayed SnS thin films. Optical Materials. 26 May 2013, 35 (9): 1693–1699. Bibcode:2013OptMa..35.1693P. doi:10.1016/j.optmat.2013.04.034. 
  14. ^ Burton, Lee A.; Whittles, Thomas J.; Hesp, David; Linhart, Wojciech M.; Skelton, Jonathan M.; Hou, Bo; Webster, Richard F.; O'Dowd, Graeme; Reece, Christian; Cherns, David; Fermin, David J.; Veal, Tim D.; Dhanak, Vin R.; Walsh, Aron. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016, 4 (4): 1312–1318. doi:10.1039/C5TA08214E. hdl:10044/1/41359可免費查閱. 
  15. ^ Haacke, G.; Castellion, G. A. Preparation and Semiconducting Properties of Cd3P2. Journal of Applied Physics. 1964, 35 (8): 2484–2487. Bibcode:1964JAP....35.2484H. doi:10.1063/1.1702886. 
  16. ^ Kimball, Gregory M.; Müller, Astrid M.; Lewis, Nathan S.; Atwater, Harry A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 (PDF). Applied Physics Letters. 2009, 95 (11): 112103. Bibcode:2009ApPhL..95k2103K. ISSN 0003-6951. doi:10.1063/1.3225151. 
  17. ^ Syrbu, N. N.; Stamov, I. G.; Morozova, V. I.; Kiossev, V. K.; Peev, L. G. Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation. Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds. 1980: 237–242. 
  18. ^ Botha, J. R.; Scriven, G. J.; Engelbrecht, J. A. A.; Leitch, A. W. R. Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2. Journal of Applied Physics. 1999, 86 (10): 5614–5618. Bibcode:1999JAP....86.5614B. doi:10.1063/1.371569. 
  19. ^ 19.0 19.1 19.2 Rahimi, N.; Pax, R. A.; MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry. 2016, 44 (3): 86–105. doi:10.1016/j.progsolidstchem.2016.07.002. 
  20. ^ O. Madelung; U. Rössler; M. Schulz (編). Cuprous oxide (Cu2O) band structure, band energies. Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. Landolt-Börnstein - Group III Condensed Matter. 41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I. 1998: 1–4. ISBN 978-3-540-64583-2. doi:10.1007/10681727_62. 
  21. ^ Shin, S.; Suga, S.; Taniguchi, M.; Fujisawa, M.; Kanzaki, H.; Fujimori, A.; Daimon, H.; Ueda, Y.; Kosuge, K. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO 2, V 6 O 13, and V 2 O 3. Physical Review B. 1990, 41 (8): 4993–5009. Bibcode:1990PhRvB..41.4993S. PMID 9994356. doi:10.1103/physrevb.41.4993. 
  22. ^ Sinha, Sapna. Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nature Communications. 2020, 11 (1): 823. Bibcode:2020NatCo..11..823S. PMC 7010709可免費查閱. PMID 32041958. S2CID 256633781. doi:10.1038/s41467-020-14481-z. 
  23. ^ Kobayashi, K.; Yamauchi, J. Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces. Physical Review B. 1995, 51 (23): 17085–17095. Bibcode:1995PhRvB..5117085K. PMID 9978722. doi:10.1103/PhysRevB.51.17085. 
  24. ^ Arora, Himani. Charge transport in two-dimensional materials and their electronic applications (PDF). Doctoral Dissertation. 2020 [July 1, 2021]. 
  25. ^ B. G. Yacobi Semiconductor materials: an introduction to basic principles Springer, 2003, ISBN 0-306-47361-5
  26. ^ Kumar, Manish; Sharma, Anjna; Maurya, Indresh Kumar; Thakur, Alpana; Kumar, Sunil. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities. Journal of Taibah University for Science. 2019, 13: 280–285. S2CID 139826266. doi:10.1080/16583655.2019.1565437可免費查閱. 
  27. ^ Synthesis and Characterization of Nano-Dimensional Nickelous Oxide (NiO) Semiconductor S. Chakrabarty and K. Chatterjee
  28. ^ Synthesis and Room Temperature Magnetic Behavior of Nickel Oxide Nanocrystallites Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]
  29. ^ Arsenic sulfide (As2S3)
  30. ^ Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors
  31. ^ HODES; Ebooks Corporation. Chemical Solution Deposition of Semiconductor Films. CRC Press. 8 October 2002: 319– [28 June 2011]. ISBN 978-0-8247-4345-1. 
  32. ^ Arumona Edward Arumona; Amah A N. Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium. Advanced Journal of Graduate Research. 2018, 3: 41–46. doi:10.21467/ajgr.3.1.41-46可免費查閱. 
  33. ^ Prashant K Sarswat; Michael L Free. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode. International Journal of Photoenergy. 2013, 2013: 1–7. doi:10.1155/2013/154694可免費查閱. 
  34. ^ Trukhan, V. M.; Izotov, A. D.; Shoukavaya, T. V. Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics. Inorganic Materials. 2014, 50 (9): 868–873. S2CID 94409384. doi:10.1134/S0020168514090143. 
  35. ^ Borisenko, Sergey; et al. Experimental Realization of a Three-Dimensional Dirac Semimetal. Physical Review Letters. 2014, 113 (27603): 027603. Bibcode:2014PhRvL.113b7603B. PMID 25062235. S2CID 19882802. arXiv:1309.7978可免費查閱. doi:10.1103/PhysRevLett.113.027603. 
  36. ^ Cisowski, J. Level Ordering in II3-V2 Semiconducting Compounds. Physica Status Solidi B. 1982, 111 (1): 289–293. Bibcode:1982PSSBR.111..289C. doi:10.1002/pssb.2221110132.