透光帶

維基百科,自由的百科全書
(重新導向自真光层
水生層
浮游生物界
透光帶
  表層帶
無光帶
  中層帶
  半深海帶
  深海帶
  超深淵帶
底層區
底棲帶
水層英語Stratification (water)
密度躍層英語Pycnocline
等密度線英語Isopycnal
化學躍層英語Chemocline
  營養躍層英語Nutricline
  鹽躍層英語Halocline
溫躍層
  溫鹽環流
海洋棲息地英語Marine habitats
湖泊分層英語Lake stratification
水域生態系英語Aquatic ecosystem
野生漁業英語Wild fisheries


透光帶(英語:Photic zoneEuphotic ZoneSunlight zone),又名真光層表層帶或者透光層[1],是指湖泊海洋中, 光度足以供浮游植物行光合作用的深度範圍,大約從海表面至水深100〜200 m之間,這層水體受大氣層和陽光的影響,水溫常有明顯的季節性變動,具有基礎生產力,也是各類生物密度最高的水層。[2] 當深度達到200米的時候,可見光已經基本被吸收殆盡,200米以上的這一片「光照區」在海洋學中被稱為透光層。透光層是海洋光合作用的生物的主要聚集區。[3] 透光層的深度受水體水質所影響,在混沌的水體中,透光層可能少於1公尺;在乾淨的水體中卻可達到50公尺。[4]從大氣-水界面開始,真光層一直延伸到光線亮度降低到表面亮度1%的區域(亦稱作「真光層深度」)。

浮游生物[編輯]

垂直分布浮游植物由於進行光合作用,僅分布在海洋有光照的上層(約0~200米,稱為真光層)。藍藻大多分布於真光層的上部,硅藻則可分布在整個真光層。浮游動物在上、中、下各個水層都有分布,但種類和數量互不相同。[5] 束毛藻主要分布在熱帶和亞熱帶貧營養鹽海域的表層水面,其環境特點為:水團相對穩定,水域營養鹽濃度較低,光的透過率較高。通常在邊界涌流(boundary current),如墨西哥灣涌流,黑潮湧流(Kuroshio current)和熱帶海域瀉湖(lagoon)水域束毛 藻的生物量較大[6]。束毛藻能夠在營養貧乏的表層水域有較高的生物量主要是因為:束毛藻能夠將空氣中的氮氣轉化成化合態氮為自身提供營養[7],由於束毛藻細胞中含有氣泡為其提供浮力使藻體能浮於表層水域,同時由於細胞具有特殊的光合結構,使束毛藻能在光照度較強的透光層中生長繁殖。[8]。在海洋真光層生態系統中束毛藻群落通常提供其他生物(如硅藻,甲藻,原生動物,水螅類,橈足類)生長的良好環境,並為其他生物提供有機營養。[9]

營養鹽[編輯]

鐵在營養鹽含量較高,葉綠素含量較低的海域對初級生產力起主要限制作用,鐵主要通過大氣的沉降作用進入海洋的真光層水域。[10]

在生物地球化學循環中的作用[編輯]

海洋真光層中氮營養的輸入主要有兩個來源:生物固氮和由上升流垂直輸入的硝態氮,兩者在真光層對 CO2 的吸收中所起的作用不盡相同,與固氮相比,上升流垂直輸入硝態氮的同時伴隨着二氧化碳和磷酸鹽的大量輸入,這就降低了對大氣中二氧化碳的淨吸收量。而通過生物固氮作用輸入的氮則以 Redfiled 比對應海洋真光層對大氣中二氧化碳的淨吸收量[11]

參見[編輯]

無光層

參考文獻[編輯]

  1. ^ 透光带. 全國科學技術名詞審定委員會. [永久失效連結]
  2. ^ 戴昌鳳等. 臺灣區域海洋學. 國立臺灣大學出版中心. 2014: 264 [2016-09-08]. ISBN 9863500453. (原始內容存檔於2017-03-05) (中文). 
  3. ^ 李宏. 高新科技的开发(海洋与科技探索之旅 ). 青蘋果數據中心. 2013 [2016-09-08]. (原始內容存檔於2017-03-05) (中文). 
  4. ^ 國家教育研究院 釋義 透光層 Euphotic Zone 2002年2月 環境科學大辭典. terms.naer.edu.tw. [2016-09-08]. (原始內容存檔於2020-10-21) (中文). 
  5. ^ 李宏 主編. 海洋与科技探索之旅丛书(套装共9册). 青蘋果數據中心. 2015 [2016-09-08]. (原始內容存檔於2017-03-05) (中文). 
  6. ^ 張燕英,董俊德,王漢奎,王友紹,張 偲,黃良民. 海洋蓝藻束毛藻的研究进展. 海洋科學. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. (原始內容存檔於2020-10-26). 原文引用:[5] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, aglobally significant marine Cyanobacterium[J]. Science ,1997, 276:1 221-1 229.[6] Chang J, Chiang K P, Gong G C. Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium,Trichidesmium, in southern East China Sea[J]. ContinentalShelf Research, 2000, 20: 479-492. 
  7. ^ 張燕英,董俊德,王漢奎,王友紹,張 偲,黃良民. 海洋蓝藻束毛藻的研究进展. 海洋科學. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. (原始內容存檔於2020-10-26). 原文引用:[7] Mulholland M R, Floge S, Carpenter E J, et al. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp.[J]. Mar Ecol Prog Ser , 2002,239:45-55. 
  8. ^ 張燕英,董俊德,王漢奎,王友紹,張 偲,黃良民. 海洋蓝藻束毛藻的研究进展. 海洋科學. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. (原始內容存檔於2020-10-26). 原文引用:[5] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, a globally significant marine Cyanobacterium[J]. Science ,1997, 276:1 221-1 229. 
  9. ^ 張燕英,董俊德,王漢奎,王友紹,張 偲,黃良民. 海洋蓝藻束毛藻的研究进展. 海洋科學. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. (原始內容存檔於2020-10-26). 原文引用:[8] Lugomela C, Lyimo T J, Bryceson I, et al. Trichodesmium in coastal waters of Tanzania: diversity, seasonality, nitrogen and carbon fixation [J]. Hydrobiologia , 2002, 477: 1-13. 
  10. ^ 張燕英,董俊德,王漢奎,王友紹,張 偲,黃良民. 海洋蓝藻束毛藻的研究进展. 海洋科學. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. (原始內容存檔於2020-10-26). 原文引用:[2] Capone D G, Carpenter E J. Nitrogen fixation by marine cyanobacteria: historical and global perspectives[J]. Bull Inst Oceanogr Monaco,1999, 19: 235-256. [7] Mulholland M R, Floge S, Carpenter E J, et al. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp.[J]. Mar Ecol Prog Ser , 2002,239:45-55. 
  11. ^ 張燕英,董俊德,王漢奎,王友紹,張 偲,黃良民. 海洋蓝藻束毛藻的研究进展. 海洋科學. 2007, 31 (3): 84 [2016-09-08]. 1000-3096(2007)03-0084-05. (原始內容存檔於2020-10-26). 原文引用:[5] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, aglobally significant marine Cyanobacterium[J]. Science ,1997, 276:1 221-1 229.[9] Karl D, Michaels A, Bergman B, et al. Dinitrogen fixation in the world’s oceans[J]. Biogeochemistry, 2002. 57/58:47-98.