陀螺儀

維基百科,自由的百科全書
前往: 導覽搜尋
定軸陀螺儀
偏軸陀螺儀
迴轉儀的構造
三軸

陀螺儀英文gyroscope),是一種用來感測與維持方向的裝置,基於角動量守恆的理論設計出來的。陀螺儀主要是由一個位於軸心且可旋轉的轉子構成。 陀螺儀一旦開始旋轉,由於轉子的角動量,陀螺儀有抗拒方向改變的趨向。陀螺儀多用於導航定位等系統。

歷史[編輯]

1850年法國物理學家萊昂·傅科(J.Foucault)為了研究地球自轉,首先發現高速轉動中的轉子(rotor),由於慣性作用它的旋轉軸永遠指向一固定方向,他用希臘文gyro(旋轉)和skopein(看)兩字合為gyroscopei一字來命名這種儀錶。

結構[編輯]

陀螺儀的裝置,一直是航空航海上航行姿態及速率等最方便實用的參考儀錶。

基本上陀螺儀是一種機械裝置,其主要部分是一個對旋轉軸以極高角速度旋轉的轉子,轉子裝在一支架內(見圖一a);在通過轉子中心軸XX1上加一內環架,那麼陀螺儀就可環繞飛機兩軸作自由運動;然後,在內環架外加上一外環架;這個陀螺儀有兩個平衡環,可以環繞飛機三軸作自由運動,就是一個完整的太空陀螺儀(space gyro)。

特性[編輯]

陀螺儀被用在飛機飛行儀錶的心臟地位,是由於它的兩個基本特性:一為定軸性(inertia or rigidity),另一是逆動性(precession),這兩種特性都是建立在角動量守恆的原則下。

定軸性[編輯]

物體維持自身轉動狀態並對抗改變的能力稱為轉動慣量,其由相對於特定旋轉軸的質量分布決定,對多質點物體轉動慣量I = \sum_{i=1}^N {m_i r_i^2},概言之:質量越大、對軸距離越遠,轉動慣量越大。一方面陀螺轉子的的對軸對稱性結構使得其具備了同質量物體較大的對軸轉動慣量,意味着其在同阻力扭矩情況下能夠更長時間保持原始運動狀態;另一方面在軸的、小摩擦與無角自由度限制的支點使得外力無法籍此產生較大且有效的阻力扭矩;因此當陀螺轉子以極高速度旋轉時,其轉動得以維持並保持其軸指向一個相對固定的方向,這種物理現象稱為陀螺儀的定軸性或慣性。

在運轉中的陀螺儀,如果外界施一力在轉子上,此力對支點的力矩當可分解為順軸方向和垂直於軸方向兩個分力矩;前者使陀螺加速、減速,但不會改變轉軸方向;後者的時間積分將會逐漸改變轉動方向(通常是短時較小而隨時間逐漸積累增大),併產生相對於原軸的章動(新的旋轉軸原軸旋轉,如轉速降低時陀螺受重力作用時的非垂直旋轉)。

參見[編輯]

注釋[編輯]

參考資料[編輯]

  • 李春霖譯 飛行概要圖解 徐氏基金會 12~15頁
  • W. J. Hesse, N. V. S. Mumford, Jr., Jet Propulsion for Application 大學圖書出版社 6~7頁 民國七十一年三月
  • E. H. J. Pallett, V. Brown, Aircraft Instruments Principles and Applications 滄海書局 第五章
  • J. Roskan, Airplane Flight Dynamics &Automatic Flight Controls, Part Ⅰ 滄海書局 25~28頁
  • and , "Über die Theorie des Kreisels" (Tr., About the theory of the gyroscope). Leipzig, Berlin, B.G. Teubner, 1898-1914. 4 v. illus. 25 cm.

外部連結[編輯]