花色素苷

维基百科,自由的百科全书

花色素苷(英语:Anthocyanin,简称花色苷)是花色素糖苷衍生物的统称,是一类常见的水溶性植物色素。视乎pH值,花色素苷显红、紫或蓝色。花色素苷广泛分布在陆生植物,尤其是越橘属悬钩子属植物,在蓝莓红莓樱桃茄子葡萄等食物含量丰富。花色素苷本身也是种经核准的食品添加剂。花色素苷有助植物对抗由非生物因素导致的活性氧类压力,并为某些植物提供保护色

化学结构[编辑]

花色素苷的骨架-苯并吡喃𬭩离子配以氯离子作为抗衡离子
矢车菊素分子的构象

花色素苷是一组苯并吡喃化合物(花青素)的糖苷衍生物统称:花青素通常在植物中与糖类糖苷键(R3位置)结合的形式存在。在R2位置的苯基可以有不同的取代基。正价的花色素苷的抗衡离子(Counterion)一般是氯离子;对pH敏感,可用作酸碱指示剂

几种花青素分子和它们的取代基
花青素 基本结构 R3' R4' R5' R3 R5 R6 R7
橙凤仙素英语Aurantinidin Basic structure of Anthocyans: The flavio-cation −H −OH −H −OH −OH −OH −OH
矢车菊素 −OH −OH −H −OH −OH −H −OH
翠雀花素 −OH −OH −OH −OH −OH −H −OH
欧花丹素英语Europinidin −OCH3 −OH −OH −OH −OCH3 −H −OH
木犀草定英语Luteolinidin −OH −OH −H −H −OH −H −OH
天竺葵素英语Pelargonidin −H −OH −H −OH −OH −H −OH
锦葵花素 −OCH3 −OH −OCH3 −OH −OH −H −OH
芍药花素英语Peonidin −OCH3 −OH −H −OH −OH −H −OH
矮牵牛素英语Petunidin −OH −OH −OCH3 −OH −OH −H −OH
玫红报春素英语Rosinidin −OCH3 −OH −H −OH −OH −H −OCH3

富含花色素苷的植物[编辑]

花色素苷令图中植物显露深紫色。

色泽[编辑]

被花色素苷染色的花朵可以吸引大量的授粉动物。花色素苷也可令果实颜色鲜艳,吸引草食性动物前来进食,从而促进种子散播。在能够进行光合作用的组织,例如幼嫩的凯梅斯橡木英语Quercus coccifera,显红紫色的花色素苷的吸收光谱和绿色的叶绿素似乎是互补的。这或者能保护叶片免受一些嗜绿色的食草动物的侵害[1]

生理作用[编辑]

花色素苷有助植物对抗由非生物因素导致的活性氧类压力,例如被过量紫外光暴晒[2]和极端温度[3][4]。番茄植物便是利用花色素苷对抗寒冷压力,从而减少叶部细胞的凋亡[3]

可能的食用价值[编辑]

紫色的椰菜花含有花色素苷

花色素苷是植物的次级代谢产物和经核准的食品添加剂,欧盟编号E163,能在欧盟、澳洲及新西兰合法使用[5][6]

尽管花色素苷具备体外的抗氧化特性[7],这种抗氧化能力在进食后不会存留。鲍林研究院英语Linus Pauling Institute欧洲食品安全管理局英语European Food Safety Authority称,食用花色素苷或其他植物色素在经历消化过程以后没有明显或直接的抗氧化价值[8][9][10]。和受控试管状况不同,花色素苷在体内经过广泛代谢,原型只占5%不到,其余的都是经化学修饰、被身体顺速排走的代谢物[11]。血液的抗氧化余量在服用富含花色素苷的食物后上升或许是植物色素经代谢后生成尿酸所导致的[11]

花色素苷的分布[编辑]

花色素苷存在于细胞液泡内,尤其是花和果的细胞;在叶、茎和根部细胞也偶有发现。在含花色素苷的组织里,花色素苷多数集中在外层的细胞,例如上皮和外周叶肉细胞。花色素苷在大自然最常存在的形式为矢车菊素翠雀花素锦葵色素芍药色素英语Peonidin天竺葵素英语Pelargonidin矮牵牛素英语Petunidin糖苷。在碳固定过程中生成的碳氢化合物,有大约2%最终转化成植物色素(例如花色素苷)。不是所有的陆生植物都含有花色素苷。在石竹目植物(包括仙人掌甜菜苋菜),花色素苷被甜菜根素所取代。有趣的是,花色素苷和甜菜根素从来都不会在同一种植物身上共存[12][13]

由于它们与别不同的外观和厨艺价值,农业上有时会刻意育种花青素苷含量高的植物,例如血橙甜椒[14]

花朵[编辑]

花青素苷广泛存在于不同植物的花朵里,例如某些蓝色花头的绿绒蒿品种[15]

食物[编辑]

食物来源 花色素苷含量(毫克每100克食物)
阿萨伊浆果 320
黑加仑 190–270
野樱莓 1,480[16]
茄子 750
血橙 ~200
马里昂黑莓 317[17]
黑莓 589[18]
野生黑莓 365
红莓 558[19]
车厘子 122[20]
皇后石榴莓 277[21]
醋栗 80–420
紫色玉米Z. mays L.) 1,642[22]
紫色玉米 是玉米核的十倍[23]
康科德葡萄 326[24]
诺顿葡萄 888[24]

越橘属植物,例如蓝莓红莓欧洲越橘,及悬钩子属的植物、樱桃茄子黑米、康科德葡萄,麝香葡萄,红甘蓝紫罗兰花均富含花青素苷。粉红色果肉的及粉红色珍珠苹果亦含花青素[25][26]。香蕉、芦笋豌豆茴香、梨和马铃薯也含有花色素苷,但含量较低。在某些品种的绿色醋栗中可能完全不含花青素[16]

目前已知花色素苷含量最高的食物为黑豆种皮,含量约为2克/每100克[27]、紫色玉米的芯和壳、野樱莓的皮和果肉(见表)。由于不同的样品产地、制备方法及提取过程,表内各项数字不能直接作比较[28][29]

传统天然的农业技术和植物杂交催生了各种本来不含花青素苷的植物物种,例如蓝色或肉红色的马铃薯、紫色或红色的椰菜花椰菜西兰花胡萝卜玉米

透过基因渗入,园艺番茄从基因改造物种获得了智利科隆群岛紫色野生种的基因型,但最终的杂交产物不含基因改造成分。这个品种被称为“淀蓝玫瑰”并于2012年面世[30]。和普通番茄相比,高花色素苷的番茄保存期翻倍,还能压抑收割后霉菌繁殖带来的灰霉病英语Botrytis cinerea[31]

蓝番茄

有些基因改造番茄添加了金鱼草属植物的转录因子,能够结出高花色素苷含量的果子[32]。此外,在刚刚成熟的天然橄榄里,也可找到花色素苷的踪迹[33][34]。花色素苷是导致某些橄榄显红色或紫色的部分原因[33]

食用植物的叶[编辑]

色彩斑斓的植物,例如紫色玉米,蓝莓或越橘,其叶部的花青素苷含量,是其可食用芯或果实的十倍[23][35]。透过对发育中的果树树叶进行光谱分析,可以得知其花色素苷的含量、果实的成熟度、质量以至收成期[36]

参见[编辑]

参考文献[编辑]

  1. ^ Karageorgou P; Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol. 2006, 26 (5): 613–621. PMID 16452075. doi:10.1093/treephys/26.5.613. 
  2. ^ Stapleton, A. E. Ultraviolet Radiation and Plants: Burning Questions. The Plant Cell. 1992-11-01, 4 (11): 1353–1358. ISSN 1532-298X. PMC 160223可免费查阅. PMID 12297637. doi:10.1105/tpc.4.11.1353. 
  3. ^ 3.0 3.1 Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures. PLOS ONE. 2016-03-04, 11 (3): e0151067 [2022-07-16]. ISSN 1932-6203. PMC 4778906可免费查阅. PMID 26943362. doi:10.1371/journal.pone.0151067. (原始内容存档于2020-11-08). 
  4. ^ Breusegem, Frank Van; Dat, James F. Reactive Oxygen Species in Plant Cell Death. Plant Physiology. 2006-06-01, 141 (2): 384–390 [2017-06-05]. ISSN 1532-2548. PMC 1475453可免费查阅. PMID 16760492. doi:10.1104/pp.106.078295. (原始内容存档于2020-12-18) (英语). 
  5. ^ UK Food Standards Agency: Current EU approved additives and their E Numbers. [2011-10-27]. (原始内容存档于2012-02-07). 
  6. ^ Australia New Zealand Food Standards CodeStandard 1.2.4 — Labelling of ingredients. [2011-10-27]. (原始内容存档于2013-07-19). 
  7. ^ De Rosso, VV; Morán Vieyra, FE; Mercadante, AZ; et al. Singlet oxygen quenching by anthocyanin's flavylium cations. Free Radical Research. October 2008, 42 (10): 885–91. PMID 18985487. doi:10.1080/10715760802506349. 
  8. ^ Lotito SB; Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon?. Free Radic. Biol. Med. 2006, 41 (12): 1727–46. PMID 17157175. doi:10.1016/j.freeradbiomed.2006.04.033. 
  9. ^ Williams RJ; Spencer JP; Rice-Evans C. Flavonoids: antioxidants or signalling molecules?. Free Radical Biology & Medicine. April 2004, 36 (7): 838–49. PMID 15019969. doi:10.1016/j.freeradbiomed.2004.01.001. 
  10. ^ Scientific Opinion on the substantiation of health claims related to various food(s)/food constituent(s) and protection of cells from premature aging, antioxidant activity, antioxidant content and antioxidant properties, and protection of DNA, proteins and lipids from oxidative damage pursuant to Article 13(1) of Regulation (EC) No 1924/20061页面存档备份,存于互联网档案馆), EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)2, 3 European Food Safety Authority (EFSA), Parma, Italy, EFSA Journal 2010; 8(2):1489
  11. ^ 11.0 11.1 "Studies force new view on biology of flavonoids页面存档备份,存于互联网档案馆)", by David Stauth, EurekAlert!. Adapted from a news release issued by Oregon State University
  12. ^ Francis, F.J. Colorants. Egan Press. 1999. ISBN 1-891127-00-4. 
  13. ^ Stafford, Helen A. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science. 1994, 101 (2): 91–98 [2017-06-05]. doi:10.1016/0168-9452(94)90244-5. (原始内容存档于2018-12-13). 
  14. ^ Stommel J, Griesbach RJ. Twice as Nice Breeding Versatile Vegetables. Agricultural Research Magazine, US Department of Agriculture. September 2006 [2016-02-02]. (原始内容存档于2015-10-25). 
  15. ^ Meconopsis GroupColour Range. [2017-02-12]. (原始内容存档于2020-05-04). 
  16. ^ 16.0 16.1 Wu X; Gu L; Prior RL; et al. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry. December 2004, 52 (26): 7846–56. PMID 15612766. doi:10.1021/jf0486850. 
  17. ^ Siriwoharn T; Wrolstad RE; Finn CE; et al. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. Journal of Agricultural and Food Chemistry. December 2004, 52 (26): 8021–30. PMID 15612791. doi:10.1021/jf048619y. 
  18. ^ Wada L; Ou B. Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agricultural and Food Chemistry. June 2002, 50 (12): 3495–500. PMID 12033817. doi:10.1021/jf011405l. 
  19. ^ Hosseinian FS; Beta T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. Journal of Agricultural and Food Chemistry. December 2007, 55 (26): 10832–8. PMID 18052240. doi:10.1021/jf072529m. 
  20. ^ Wu X; Beecher GR; Holden JM; et al. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry. November 2006, 54 (11): 4069–75. PMID 16719536. doi:10.1021/jf060300l. 
  21. ^ Fanning K; Edwards D; Netzel M; et al. Increasing anthocyanin content in Queen Garnet plum and correlations with in-field measures. Acta Horticulturae. November 2013, 985: 97–104. 
  22. ^ Lieberman S. The antioxidant power of purple corn: a research review. Alternative & Complementary Therapies. 2007, 13 (2): 107–110. doi:10.1089/act.2007.13210. 
  23. ^ 23.0 23.1 Li, C. Y.; Kim, H. W.; Won, S. R.; et al. Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry. 2008, 56 (23): 11413–6. PMID 19007127. doi:10.1021/jf802201c. 
  24. ^ 24.0 24.1 Muñoz-Espada, A. C.; Wood, K. V.; Bordelon, B.; et al. Anthocyanin Quantification and Radical Scavenging Capacity of Concord, Norton, and Marechal Foch Grapes and Wines. Journal of Agricultural and Food Chemistry. 2004, 52 (22): 6779–86. PMID 15506816. doi:10.1021/jf040087y. 
  25. ^ Cevallos-Casals, BA; Byrne, D; Okie, WR; et al. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry. 2006, 96: 273–328. doi:10.1016/j.foodchem.2005.02.03. 
  26. ^ Sekido, Keiko; et al. Efficient breeding system for red-fleshed apple based on linkage with S3-RNase allele in ‘Pink Pearl’.. HortScience. 2010, 45 (4): 534–537. 
  27. ^ Choung, Myoung-Gun; Baek, In-Youl; Kang, Sung-Taeg; et al. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. December 2001, 49 (12): 5848–51. PMID 11743773. doi:10.1021/jf010550w. 
  28. ^ Krenn, L; Steitz, M; Schlicht, C; et al. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements—analysis with problems. Pharmazie. November 2007, 62 (11): 803–12. PMID 18065095. 
  29. ^ Siriwoharn, T; Wrolstad, RE; Finn, CE; et al. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. J Agric Food Chem. December 2004, 52 (26): 8021–30. PMID 15612791. doi:10.1021/jf048619y. 
  30. ^ Scott J. Purple tomato debuts as ‘Indigo Rose’. Oregon State University Extension Service, Corvallis. 2012-01-27 [2014-09-09]. (原始内容存档于2014-08-22). 
  31. ^ Zhang, Y.; Butelli, E.; De Stefano, R.; et al. Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology. 2013, 23 (12): 1094–100. PMC 3688073可免费查阅. PMID 23707429. doi:10.1016/j.cub.2013.04.072. 
  32. ^ Butelli, Eugenio; Titta, Lucilla; Giorgio, Marco; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology. November 2008, 26 (11): 1301–8. PMID 18953354. doi:10.1038/nbt.1506. 
  33. ^ 33.0 33.1 Agati, Giovanni; Pinelli, Patrizia; Cortés Ebner, Solange; et al. Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. Journal of Agricultural and Food Chemistry. March 2005, 53 (5): 1354–63. PMID 15740006. doi:10.1021/jf048381d. 
  34. ^ Stan Kailis & David Harris. The olive tree Olea europaea. Producing Table Olives. Landlinks Press. 2007-02-28: 17–66 [2017-06-05]. ISBN 978-0-643-09203-7. (原始内容存档于2020-05-04). 
  35. ^ Vyas, P; Kalidindi, S; Chibrikova, L; et al. Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. Journal of Agricultural and Food Chemistry. 2013, 61 (32): 7769–76. PMID 23875756. doi:10.1021/jf401158a. 
  36. ^ Bramley, R.G.V.; Le Moigne, M.; Evain, S.; et al. On-the-go sensing of grape berry anthocyanins during commercial harvest: development and prospects (PDF). Australian Journal of Grape and Wine Research. February 2011, 17: 316–326 [2017-06-05]. doi:10.1111/j.1755-0238.2011.00158.x. (原始内容 (PDF)存档于2017-10-19).