光合作用

維基百科,自由的百科全書
前往: 導覽搜尋
綠色的,進行光合作用的重要場所
光合作用中的物質循環過程

光合作用(Photosynthesis)是植物藻類生產者和某些細菌,利用光能,將二氧化碳或是硫化氫轉化為碳水化合物。光合作用可分為產氧光合作用(oxygenic photosynthesis)和不產氧光合作用(anoxygenic photosynthesis)。

植物之所以被稱為食物鏈生產者,是因為它們能夠透過光合作用利用無機物生產有機物並且貯存能量,其能量轉換效率約為6%[1]。通過食用,食物鏈的消費者可以吸收到植物所貯存的能量,效率為10%左右。對大多數生物來説,這個過程是他們賴以生存的關鍵。而地球上的碳氧循環,光合作用是其中最重要的一環。

發現[編輯]

揚·巴普蒂斯塔·范·海爾蒙特

原理[編輯]

光合作用分解水釋放出O2並將CO2轉化為糖

植物與動物不同,沒有消化系統,因此必須依靠其他的方式來進行對營養的攝取,就是所謂的自養生物。對於綠色植物來説,在陽光充足的白天,將利用陽光的能量來進行光合作用,以獲得生長發育必需的養分。

這個過程的關鍵參與者是內部的葉綠體。葉綠體在陽光的作用下,把經由氣孔進入葉子內部的二氧化碳和由根部吸收的轉變成爲葡萄糖,同時釋放出氧氣:

12H2O + 6CO2 +陽光→ (與葉綠素產生化學作用); C6H12O6 (葡萄糖) + 6O2 + 6H2O

注意:上式中等號兩邊的水不能抵消,雖然在化學上式子顯得很特別。原因是左邊的水,是植物吸收所得,而且用於製造氧氣和提供電子離子。而右邊的水分子的氧原子則是來自二氧化碳。為了更清楚地表現這一原料產物起始過程,人們更習慣在等號左右兩邊都寫上水分子,或者在右邊的水分子右上角打上星號。

植物的光合作用可分為光反應暗反應兩個步驟如下:

12H2O +陽光→ 12H2 + 6O2 [光反應]

12H2 (來自光反應) + 6CO2 → C6H12O6 (葡萄糖) + 6H2O [暗反應]

光反應[編輯]

光合作用的循環圖
  • 場所:類囊體
  • 影響因素:光強度,水分供給,氧的含量
  • 過程:葉綠體膜上的兩套光合作用系統:光合作用系統一和光合作用系統二,(光合作用系統一比光合作用系統二要原始,但電子傳遞先在光合系統二開始,一二的命名則是按其發現順序)在光照的情況下,分別吸收700nm和680nm波長的光子,作為能量,將從水分子光解過程中得到電子不斷傳遞,其中還有細胞色素b6/f的參與,最後傳遞給輔酶NADP,通過鐵氧還蛋白-NADP還原酶將NADP還原為NADPH。而水光解所得的氫離子則因為順濃度差通過類囊體膜上的蛋白質複合體從類囊體內向外移動到基質,勢能降低,其間的勢能用於合成ATP,以供暗反應所用。而此時勢能已降低的氫離子則被氫載體NADP帶走。一分子NADP可攜帶兩個氫離子。這個NADPH+H離子則在暗反應裡面充當還原劑的作用。
  • 意義:
  1. 光解水,產生氧氣。
  2. 將光能轉變成化學能,產生三磷酸腺苷 (ATP),為暗反應提供能量。
  3. 利用水光解的產物氫離子,合成NADPH及H離子,為暗反應提供還原劑。

詳細過程如下:

光系統由多種色素組成,如葉綠素a(Chlorophyll a)、葉綠素b(Chlorophyll b)、類胡蘿蔔素(Carotenoids)等組成。既拓寬了光合作用的作用光譜,其他的色素也能吸收過度的強光而產生所謂的光保護作用(Photoprotection)。在此系統裡,當光子打到系統裡的色素分子時,會如圖片[1] 所示一般,電子會在分子之間移轉,直到反應中心為止。反應中心有兩種,光系統一吸收光譜於700nm達到高峰,系統二則是680nm為高峰。反應中心是由葉綠素a及特定蛋白質所組成(這邊的葉綠素a是因為位置而非結構特殊),蛋白質的種類決定了反應中心吸收之波長。反應中心吸收了特定波長的光線後,葉綠素a激發出了一個電子,而旁邊的酵素使水裂解成氫離子和氧原子,多餘的電子去補葉綠素a分子上的缺。然後葉綠素a透過如圖所示的過程,生產ATP與NADPH分子,過程稱之為電子傳遞鏈(Electron Transport Chain)。

電子傳遞鏈分為兩種,循環(cyclic)和非循環(noncyclic)

非循環電子傳遞鏈[編輯]

非循環電子傳遞鏈過程大致如下:

類囊體膜上的非循環電子傳遞鏈。

電子從光系統2出發。

光系統2初級接受者(Primary acceptor)→質體醌(Pq)→細胞色素複合體(Cytochrome Complex)→質體藍素(含銅蛋白質,Pc)→光系統1→初級接受者→鐵氧化還原蛋白(Fd)→NADP+還原酶(NADP+ reductase)

非循環電子傳遞鏈從光系統2出發,會裂解水,釋出氧氣,生產三磷酸腺苷 (ATP)與NADPH。

循環電子傳遞鏈[編輯]

循環電子傳遞鏈的過程如下:

電子從光系統1出發。

光系統1→初級接受者(Primary acceptor)→鐵氧化還原蛋白(Fd)→細胞色素複合體(Cytochrome Complex)→質體藍素(含銅蛋白質,Pc)→光系統1

循環電子傳遞鏈不會產生氧氣,因為電子來源並非裂解水。最後會生產出三磷酸腺苷(ATP)。

非循環電子傳遞鏈中,細胞色素複合體會將氫離子打到類囊體(Thylakoid)裡面。高濃度的氫離子會順著高濃度往低濃度的地方流這個趨勢,向類囊體外擴散。但是類囊體膜是雙層磷脂膜(Phospholipid bilayer),對於氫離子移動的阻隔很大,它只能通過一種叫做ATP合成酶(ATP Synthase)的通道往外走。途中正似水壩裡的水一般,釋放它的位能。經過ATP合成酶時會提供能量、改變它的形狀,使得ATP合成酶將ADP和磷酸合成ATP。

NADPH的合成沒有如此戲劇化,就是把送來的電子與原本存在於基質內的氫離子與NADP+合成而已。

值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此當ATP不足時,相對來說會造成NADPH的累積,會刺激循環式電子流之進行。

固碳作用(碳反應)[編輯]

植物細胞中的葉綠體。

固碳作用實質上是一系列的酶促反應。生物界有幾種固碳方法,主要是卡爾文循環,但並非所有行光合作用的細胞都使用卡爾文循環進行碳固定,例如綠硫細菌會使用還原性三羧酸循環綠曲撓菌Chloroflexus)會使用3-羥基丙酸途徑(3-Hydroxy-Propionate pathway),還有一些生物會使用核酮糖-單磷酸途徑(Ribolose-Monophosphate Pathway)和絲胺酸途徑(Serin Pathway)進行碳固定。

  • 場所:葉綠體基質
  • 影響因素:溫度,二氧化碳濃度
  • 過程:不同的植物,固碳作用的過程不一樣,而且葉片的解剖結構也不相同。這是植物對環境的適應的結果。固碳作用可分為C3,C4和CAM(景天酸代謝)三種類型(見下文)。三種類型是因二氧化碳的固定這一過程的不同而劃分的。

卡爾文循環[編輯]

卡爾文循環是光合作用裡暗反應的一部分。反應場所為葉綠體內的基質。循環可分為三個階段:羧化還原和二磷酸核酮糖的再生。大部分植物,會將吸收到的一分子二氧化碳,通過一種叫「二磷酸核酮糖羧化酶」的作用,整合到一個五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此過程稱為二氧化碳的固定。這一步反應的意義是,把原本並不活潑的二氧化碳分子活化,使之隨後能被還原。但這種六碳化合物極不穩定,會立刻分解為兩分子的三碳化合物3-磷酸甘油酸。後者被在光反應中生成的NADPH+H還原,此過程需要消耗ATP。產物是3-磷酸丙糖。後來經過一系列複雜的生化反應,一個原子,將會被用於合成葡萄糖而離開循環。剩下的五個碳原子經一些列變化,最後再生成一分子1,5-二磷酸核酮糖,循環重新開始。循環運行六次,生成一分子的葡萄糖

各類生物的光合作用[編輯]

C3類植物[編輯]

二戰後,美國加州大學柏克萊分校梅爾文·卡爾文與其同事們研究一種綠球藻,以確定植物在光合作用中如何固定CO2。此時C14示蹤技術和雙向紙層析法技術都已成熟,卡爾文正好在實驗中用上此兩種技術。

他們將培養出來的綠球藻,放置在含有未標記CO2的密閉容器中,然後將C14標記的CO2注入容器,培養相當短時間後,將綠球藻浸入熱的乙醇中殺死細胞,使細胞中的變性而失效。接著他們提取到溶液裡的分子。然後將提取物應用雙向紙層析法,分離各種化合物,再通過放射自顯影,分析放射性上面的斑點,並與已知化學成份比較。

卡爾文在實驗中發現,標記有C14的CO2很快就能轉變成有機物。在幾秒鐘內,層析紙上就出現放射性斑點,經與已知化學物比較,斑點中的化學成分是3-磷酸甘油酸(3-phosphoglycerate,PGA),是糖解作用的中間體。這第一個被提取到的產物是一個三碳分子,所以將這種CO2固定途徑稱為C3途徑,將通過這種途徑固定CO2的植物稱為C3植物。後來研究還發現,CO2固定的C3途徑是一個循環過程。人們稱之為C3循環。這一循環又稱「卡爾文循環」。

C3類植物,如二氧化碳氣孔進入葉片後,直接進入葉肉進行卡爾文循環。而C3植物的維管束鞘細胞很小,不含或含很少葉綠體,卡爾文循環不在這裡發生。

C4類植物[編輯]

C4類植物

1960年代,澳洲科學家哈奇(M. D. Hatch)和斯萊克(C. R. Slack)發現玉米甘蔗等熱帶綠色植物,除了和其他綠色植物一樣,具有卡爾文循環外,CO2首先通過一條特別的途徑被固定。這條途徑也被稱為「哈奇-斯萊克途徑」。

C4植物主要是一些生活在乾旱熱帶地區的植物。在這種環境中,植物倘長時間開放氣孔吸收二氧化碳,會導致水分通過蒸散作用過快的流失。所以,植物只能短時間開放氣孔二氧化碳攝入量必然少。植物必須利用這少量的二氧化碳進行光合作用,合成自身所需物質。

在C4植物葉片維管束的周圍,有維管束鞘圍繞,這些維管束鞘含有葉綠體,但裡面並無基粒或發育不良。在這裡,主要進行卡爾文循環。

其葉肉細胞中,含有獨特的,即磷酸烯醇式丙酮酸羧基化酶,使得二氧化碳先被一種三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草醯乙酸,這也是該暗反應類型名稱的由來。這草醯乙酸在轉變為蘋果酸鹽後,進入維管束鞘,就會分解釋放二氧化碳和一分子丙酮酸。二氧化碳進入卡爾文循環,後同C3進程。而丙酮酸則會被再次合成磷酸烯醇式丙酮酸。此過程消耗ATP

該類型的優點是,二氧化碳固定效率比C3高很多,有利植物在乾旱環境生長。C3植物行光合作用所得的澱粉,會貯存在葉肉細胞中,因為這是卡爾文循環的場所,而維管束鞘細胞則不含葉綠體。而C4植物的澱粉,將會貯存於維管束鞘細胞內,因為C4植物的卡爾文循環是在此發生的。

景天酸代謝植物[編輯]

景天酸代謝(crassulacean acid metabolism, CAM):如果說C4植物是空間上錯開二氧化碳的固定和卡爾文循環的話,那景天酸循環就是時間上錯開這兩者。行使這一途徑的植物,是那些有著膨大肉質葉子的植物,如鳳梨。這些植物晚上開放氣孔,吸收二氧化碳,同樣經哈奇-斯萊克途徑將CO2固定。早上的時候氣孔關閉,避免水分流失過快。同時在葉肉細胞中進行卡爾文循環。這些植物二氧化碳的固定效率也很高。

意義:二氧化碳的固定,使得原本化學性質不活潑的二氧化碳,化學活性增加,以利於被還原,最後合成葡萄糖。

藻類和細菌[編輯]

真核藻類,如紅藻綠藻褐藻等,和植物一樣具有葉綠體,也能夠進行產氧光合作用。光被葉綠素吸收,而很多藻類的葉綠體中還具有其它不同的色素,賦予了它們不同的顔色。

進行光合作用的細菌不具有葉綠體,而直接由細胞本身進行。屬於原核生物藍細菌(或者稱「藍藻」)同樣含有葉綠素,和葉綠體一樣進行產氧光合作用。事實上,目前普遍認爲葉綠體是由藍細菌演化而來的。其它光合細菌具有多種多樣的色素,稱作細菌葉綠素或菌綠素,但不氧化水生成氧氣,而以其它物質(如硫化氫氫氣)作爲電子供體。不產氧光合細菌包括紫硫細菌紫非硫細菌綠硫細菌綠非硫細菌太陽桿菌等。

研究意義[編輯]

研究光合作用,對農業生產,環保等領域起著基礎指導的作用。知道光反應暗反應的影響因素,可以趨利避害,如建造溫室,加快空氣流通,以使農作物增產。人們又了解到二磷酸核酮糖羧化酶的兩面性,即既催化光合作用,又會推動光呼吸,正在嘗試對其進行改造,減少後者,避免有機物和能量的消耗,提高農作物的產量。

當了解到光合作用與植物呼吸的關係後,人們就可以更好的布置家居植物擺設。比如晚上就不應把植物放到室內,以避免因植物呼吸而引起室內二氧化碳濃度增高。

參看[編輯]

參考文獻[編輯]

  1. ^ Miyamoto K. Chapter 1 - Biological energy production. Renewable biological systems for alternative sustainable energy production (FAO Agricultural Services Bulletin - 128). Food and Agriculture Organization of the United Nations. [2009-01-04].