哈代-溫伯格定律

維基百科,自由的百科全書
(已重新導向自 哈温定律)
前往: 導覽搜尋
對於兩個等位基因的哈代-溫伯格定律:橫軸表示兩個等位基因頻率pq,而縱軸表示基因型頻率。每條線表示一種基因型頻率。

哈代-溫伯格定律,也稱「遺傳平衡定律」或「哈代-溫伯格平衡定律」,分別在1908年和1909年由英國數學家G·H·哈代(Godfrey Harold Hardy)和德國醫生溫伯格(Wilhelm Weinberg)獨立證明。在群體遺傳學中,哈代-溫伯格定律主要用於描述群體等位基因頻率以及基因型頻率之間的關係。主要內容為:

一個群體理想情況(不受特定的干擾因素影響,如非隨機交配選擇遷移突變或群體大小有限),經過多個世代基因頻率基因型頻率會保持恆定並處於穩定的平衡狀態。

實際上,總會存在一個或多個干擾因素。因此,哈代-溫伯格定律在自然界中是不可能的。基因的平衡是一種理想狀態,並用於測量遺傳改變的基準。

最簡單的例子是位於單一位點的兩個等位基因:顯性等位基因記為A而隱性等位基因記為a,它們的頻率分別記為pq。頻率(A) = p;頻率(a) = qp + q = 1。如果群體處於平衡狀態,則我們可以得到

群體中純合子AA的頻率(AA) = p2
群體中純合子aa的頻率(aa) = q2
群體中雜合子Aa的頻率(Aa) = 2pq

推導[編輯]

對於二倍體物種,考慮種群中兩個獨立的等位基因A和a,它們的頻率分別是pq。使用旁氏表推導出形成新基因型的不同方式,其中每一格的值為行與列機率的乘積。

表1:哈代-溫伯格平衡的旁氏表
雌性
A (p) a (q)
雄性 A (p) AA (p2) Aa (pq)
a (q) Aa (pq) aa (q2)

最終得到後代的三個可能基因型頻率:

  • f(\mathbf{AA}) =  p^2\,
  • f(\mathbf{Aa}) = 2pq\,
  • f(\mathbf{aa}) = q^2\,

這些頻率稱為哈代-溫伯格平衡。無限大小的群體經過一個世代的隨機交配,基因型頻率就能達到平衡。在沒有其它因素的影響下,這種平衡狀態將一直保持。

相關條目[編輯]