宇宙線

維基百科,自由的百科全書
(重定向自宇宙射線
跳轉到: 導覽搜尋
宇宙線的能譜

宇宙線亦稱為宇宙射線,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子反質子,這剩餘的小部分是研究的活躍領域。

大約89%的宇宙線是單純的質子或氫原子核,10%是原子核或α粒子,還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。

粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究[1]

經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙線中發現了正電子、緲子π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。

成分[編輯]

宇宙線大致可以分成兩類:原生和衍生宇宙線。 來自太陽系外的天文物理產生的宇宙線是原宇宙線;這些原宇宙線會和星際物質作用產生衍生(二次)宇宙線。太陽在產生閃焰時,也會產生一些低能量的宇宙線。在地球大氣層外的原宇宙線,確實的成份,取決於觀測能量譜的哪些部份。不過,一般情況下,進入的宇宙線幾乎90%是質子,9%是核(α粒子),和大約1%是電子。氫和氦核的比例(質量比氦核是28%)大約與這些元素在宇宙中的元素豐度(氦的質量佔24%)相同。

其餘豐富的部份是來自於恆星核合成最終產物的其它重原子核。衍生宇宙線包含其它的原子核,它們不是豐富的核合成或大爆炸的最終產物,原生的、和。這些較輕的原子核出現在宇宙線中的比例遠大於在太陽大氣層中的比例(1:100個粒子),它們的豐度大約是的10−7

這種豐度的差異是衍生宇宙線造成的結果。當宇宙線中重的原子核成份,即碳和氧的原子核,與星際物質碰撞時,它們分裂成較輕的鋰、鈹、硼原子核(此過程被稱為宇宙射線散裂)。被發現的鋰、鈹和硼的能譜比來自碳或氧的更為尖細,這個值暗示有少數的宇宙射線散裂是由更高能量的原子核產生的,推測大概是因為它們是從銀河的磁場逃逸出來的。散裂也對宇宙線中的離子等的豐度負責,它們是宇宙線中的原子核與星際物質撞擊產生的(參見天然的背景輻射)。

即使衛星實驗在原宇宙線中發現一些反質子正電子存在的證據,但沒有複雜的反物質原子核(例如反氦核)存在的證據。在原宇宙線中觀測到的反物質豐度是符合它們也能由原宇宙線在深太空和普通物質撞擊,在衍生宇宙線的程序中產生的理論。例如,一種在實驗室中產生反質子的標準方法是以能量大於6 GeV的質子去撞擊其他的質子,而在原宇宙線中很輕易的就有許多質子的能量超過這個數值。無論是否在銀河系中,當簡單的反物質能夠由這種程序產生時(不是在大氣層的高層),它們仍可能傳播遙遠的距離抵達地球,而不會在星際空間中與其他的氫原子碰撞而湮滅。抵達地球的反質子特徵是能量最多只有2GeV,顯示它們產生的過程在基本上與宇宙線中的質子是截然不同的[2]

在過去,人們認為宙線的通量隨著時間的推移一直是相當穩定。最近的研究顯示,以1.5至2千年的時間尺度,有證據顯示在過去的40,000年,宇宙線的通量是有變化的[3]

調節(Modulation)[編輯]

探測[編輯]

宇宙射線中的核子之所以能夠從他們遙遠的源頭一直到達地球,是因為宇宙中物質的低密度。核子與其它物質有著強烈的感應,所以當宇宙線接近地球時,便開始於大氣層氣體中的核子撞擊。在粒子雨的過程中,這些碰撞產生很多π介子K介子,這些是會很快衰退為緲子的不穩定介子。由於與大氣層沒有強烈的感應以及時間膨脹的相對論性效應,許多緲子能夠到達地球表面。緲子屬於游離輻射,從而可以輕易被許多粒子探測器檢測到,例如氣泡室,或閃爍體探測器。如果多個緲子在同一時間被不同的探測器檢測到,那麼它們一定產自同一次粒子雨。

如今,新的探測手段能夠不通過粒子雨這個現象檢測這些高能粒子,也就是在太空中,不受大氣層的干擾,直接探測宇宙線,例如阿伐磁譜儀實驗。

宇宙射線歷史記錄[編輯]

亨利·貝克勒1896年發現放射性後,許多人認為大氣中的電流(地球大氣層的電離)僅來自於土中放射性物質或產生出的放射性氣體(氣的同位素)的輻射。1900至1910年,十年內逐增高度的電離率測量顯示出一個能夠通過空氣對游離輻射的吸收解釋的降值。其後,赫斯於1912年利用一個熱氣球,帶著三台靜電計,登上了5300米的高空。他探測到電離率增長到大約地面率的四倍。他得出的結論是「我的觀察結果最好的解釋是設想一種高穿透力的射線從上部進入大氣層。」赫斯因為這次後人命名為「宇宙線」(cosmic rays)的發現於1936年獲得諾貝爾物理學獎

相關條目[編輯]

注釋[編輯]

  1. ^ L. Anchordoqui, T. Paul, S. Reucroft, J. Swain. Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory. International Journal of Modern Physics A. 2003, 18 (13): 2229. arXiv:hep-ph/0206072. Bibcode:2003IJMPA..18.2229A. doi:10.1142/S0217751X03013879. 
  2. ^ Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere. I. V. Moskalenko (NASA/GSFC), A. W. Strong (MPE, Garching), J. F. Ormes (NASA/GSFC), M. S. Potgieter (Potchefstroom U.) Astrophys.J.565:280-296,2002 cite:arXiv:astro-ph/0106567v2 [1]
  3. ^ D. Lal, A.J.T. Jull, D. Pollard, L. Vacher. Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14C in ice at Summit, Greenland. Earth and Planetary Science Letters. 2005, 234 (3–4): 335–249. Bibcode:2005E&PSL.234..335L. doi:10.1016/j.epsl.2005.02.011. 

註解[編輯]

參考資料[編輯]

  • R.G. Harrison and D.B. Stephenson, Detection of a galactic cosmic ray influence on clouds, Geophysical Research Abstracts, Vol. 8, 07661, 2006 SRef-ID: 1607-7962/gra/EGU06-A-07661
  • C. D. Anderson and S. H. Neddermeyer, Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level, Phys. Rev 50, 263,(1936).
  • M. Boezio et al., Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus, Phys. Rev. D 62, 032007, (2000).
  • R. Clay and B. Dawson, Cosmic Bullets, Allen & Unwin, 1997. ISBN 1-86448-204-4
  • T. K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, 1990. ISBN 0-521-32667-2
  • P. K. F. Grieder, Cosmic Rays at Earth: Researcher』s Reference Manual and Data Book, Elsevier, 2001. ISBN 0-444-50710-8
  • A. M. Hillas, Cosmic Rays, Pergamon Press, Oxford, 1972 ISBN 0-08-016724-1
  • J. Kremer et al., Measurement of Ground-Level Muons at Two Geomagnetic Locations, Phys. Rev. Lett. 83, 4241, (1999).
  • S. H. Neddermeyer and C. D. Anderson, Note on the Nature of Cosmic-Ray Particles, Phys. Rev. 51, 844, (1937).
  • M. D. Ngobeni and M. S. Potgieter, Cosmic ray anisotropies in the outer heliosphere, Advances in Space Research, 2007.
  • M. D. Ngobeni, Aspects of the modulation of cosmic rays in the outer heliosphere, M.Sc Dissertation, Northwest University (Potchefstroom campus) South Africa 2006.
  • D. Perkins, Particle Astrophysics, Oxford University Press, 2003. ISBN 0-19-850951-0
  • C. E. Rolfs and S. R. William, Cauldrons in the Cosmos, The University of Chicago Press, 1988. ISBN 0-226-72456-5
  • B. B. Rossi, Cosmic Rays, McGraw-Hill, New York, 1964.
  • Martin Walt, Introduction to Geomagnetically Trapped Radiation, 1994. ISBN 0-521-43143-3
  • M. Taylor and M. Molla, Towards a unified source-propagation model of cosmic rays, Pub. Astron. Soc. Pac. 424, 98 (2010).
  • J. F. Ziegler, The Background In Detectors Caused By Sea Level Cosmic Rays, Nuclear Instruments and Methods 191, 419, (1981).
  • TRACER Long Duration Balloon Project: the largest cosmic ray detector launched on balloons.
  • HiRes Fly's Eye
  • Carlson, Per; De Angelis, Alessandro. Nationalism and internationalism in science: the case of the discovery of cosmic rays. European Physical Journal H. 2011. doi:10.1140/epjh/e2011-10033-6. 

外部鏈結[編輯]

Template:Radiation