有理數

維基百科,自由的百科全書
(重新導向自有理數
各式各樣的
基本

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

實數(ℝ)包括有理數(ℚ),其中包括整數(ℤ),其中包括自然數(ℕ)

數學上,可以表達為兩個整數比的數(, )被定義為有理數,例如,0.75(可被表達為);整數整數分數統稱為有理數。

與有理數相對的是無理數,如無法用整數比表示。

有理數與分數形式的區別,分數形式是一種表示比值的記法,如 分數形式無理數
所有有理數的集合表示為Q,Q+,或。定義如下:

有理數的小數部分有限或為循環。不是有理數的實數遂稱為無理數

詞源[編輯]

有理數在英文中稱作rational number,來自拉丁語rationalis,意為理性的;詞根ratio,拉丁語意為理性、計算。[1]代表「比例」的英文ratio一詞在歷史上出現得要比有理數(rational number)一詞更晚,前者最早有記錄是1660,而後者是1570年。[2][3]

運算[編輯]

有理數集對加、減、乘、除四則運算是封閉的,亦即有理數加、減、乘、除有理數的結果仍為有理數。有理數的加法和乘法如下:

兩個有理數相等若且唯若

有理數中存在加法和乘法的逆:

時,

古埃及分數[編輯]

古埃及分數是分子為1、分母為正整數的有理數。每個有理數都可以表達為有限個兩兩不等的古埃及分數的和。例如:

對於給定的正有理數,存在無窮多種表達成有限個兩兩不等的古埃及分數之和的方法。

形式構建[編輯]

數學上可以將有理數定義為建立在整數有序對等價類,這裡不為零。我們可以對這些有序對定義加法和乘法,規則如下:

為了使,定義等價關係如下:

這種等價關係與上述定義的加法和乘法上是一致的,而且可以將Q定義為整數有序對關於等價關係~的商集。例如:兩個對是相同的,如果它們滿足上述等式。(這種構建可用於任何整數環,參見商域。)

定義大小[編輯]

Q上的大小可以定義為:

若且唯若
  1. 並且
  2. 並且

然後是指。亦可在「小於」概念之上引入「大於」的概念,即:若且唯若。此排序中,每一對有理數之間皆可比較,必有且僅有以下關係之一:

又滿足傳遞性:若,且,則。所以以上定義的大小關係是全序關係

有理數集的序還滿足稠密性英語dense order:若,則必存在有理數,滿足,且[4]

性質[編輯]

有理數集是可數的

集合,以及上述的加法和乘法運算,構成,即整數商域

有理數是特徵為0的域最小的一個:所有其他特徵為0的域都包含的一個拷貝(即存在一個從到其中的同構映射)。

代數閉包,例如有理數多項式的根的域,是代數數域

所有有理數的集合是可數的,亦即是說基數(或)與自然數集合相同,都是阿列夫數,這是因為可以定義一個從有理數集映至自然數集合的笛卡爾積 單射函數,而是可數集合之故。因為所有實數的集合是不可數的,所以從勒貝格測度來看,可以認為絕大多數實數不是有理數。

有理數的序是個稠密序英語dense order:任何兩個有理數之間存在另一個有理數,事實上是存在無窮多個。此外,有理數集也沒有最大和最小元素,所以是無端點的可數稠密全序(dense linear order without endpoints)。康托爾同構定理英語Cantor's isomorphism theorem說明,任何無端點的可數稠密全序必定序同構於有理數的序,換言之,若不辨同構之異,則有理數的大小序是唯一具此性質的序結構。

實數[編輯]

有理數是實數稠密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數

依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密子集,因此它同時具有一個子空間拓撲。採用度量,有理數構成一個度量空間,這是上的第三個拓撲。幸運的是,所有三個拓撲一致並將有理數轉化到一個拓撲域。有理數是非局部緊緻空間的一個重要的實例。這個空間也是完全不連通的。有理數不構成完備的度量空間實數的完備集。

p進數[編輯]

除了上述的絕對值度量,還有其他的度量將轉化到拓撲域:

素數,對任何非零整數,這裡整除的最高次冪;

另外。對任何有理數,設

上定義了一個度量

度量空間不完備,它的完備集是p進數

參見[編輯]

參考文獻[編輯]

  1. ^ 三平方の定理 (ピタゴラスの定理) の歴史 - 何ゆえ有理数と呼ぶか ? - 名前の由来 -. asait.world.coocan.jp. [2020-10-09]. (原始內容存檔於2016-01-12). 
  2. ^ Oxford English Dictionary 2nd. Oxford University Press. 1989.  Entry ratio, n., sense 2.a.
  3. ^ Oxford English Dictionary 2nd. Oxford University Press. 1989.  Entry rational, a. (adv.) and n.1, sense 5.a.
  4. ^ 菲赫金哥爾茨; 楊弢亮 譯; 葉彥謙 譯; 郭思旭 校. 微积分学教程(第一卷) 第8版. 高等教育出版社. : 2. ISBN 5-9221-0436-5.