氫鍵

維基百科,自由的百科全書
前往: 導覽搜尋
氣態的羧酸常以二聚體形成存在
乙醯丙酮烯醇式結構借分子內氫鍵得以穩定

氫鍵是分子間作用力的一種,是一種永久偶極之間的作用力,氫鍵發生在已經以共價鍵與其它原子鍵合的原子與另一個原子之間(X-H…Y),通常發生氫鍵作用的氫原子兩邊的原子(X、Y)都是電負性較強的原子。氫鍵既可以是分子間氫鍵,也可以是分子內的[1]。其鍵能最大約為200kJ/mol,一般為5-30kJ/mol,比一般的共價鍵、離子鍵金屬鍵鍵能要小,但強於靜電引力

氫鍵對於生物高分子具有尤其重要的意義,它是蛋白質核酸四級結構得以穩定的部分原因。

成鍵[編輯]

氫鍵通常可用X-H…Y來表示。其中X以共價鍵與氫相連,具有較高的電負性,可以穩定負電荷,因此氫易解離,具有酸性質子給予體)。而Y則具有較高的電子密度,一般是含有孤對電子的原子,容易吸引氫原子,從而與X和H原子形成三中心四電子鍵

鍵能[編輯]

氫鍵鍵能大多在25-40kJ/mol之間。一般認為鍵能<25kJ/mol的氫鍵屬於較弱氫鍵,鍵能在25-40kJ/mol的屬於中等強度氫鍵,而鍵能>40kJ/mol的氫鍵則是較強氫鍵。[2] 曾經有一度認為最強的氫鍵是[HF2]中的FH…F鍵,計算出的鍵能大約為169kJ/mol。[3] 而事實上,用相同方法計算甲酸氟離子間的[HCO2H…F]氫鍵鍵能,結果要比HF2的高出大約30kJ/mol。[4]

常見氫鍵的氣態解離能數據,單位為kJ/mol[2]
較弱 中等 較強
HSH…SH2
NCH…NCH
H2NH…NH3
MeOH…OHMe
HOH…OH2
7
16
17
19
22
FH…FH
ClH…OMe2
FH…OH2
29
30
38
HOH…Cl
HCONH2…OCHNH2
HCOOH…OCHOH
HOH…F
H2OH+…OH2
FH…F
HCO2H…F
55
59
59
98
151
169
~200

常見氫鍵的平均鍵能數據為:

  • F—H … :F (155 kJ/mol 或 40 kcal/mol)
  • O—H … :N (29 kJ/mol 或 6.9 kcal/mol)
  • O—H … :O (21 kJ/mol 或 5.0 kcal/mol)
  • N—H … :N (13 kJ/mol 或 3.1 kcal/mol)
  • N—H … :O (8 kJ/mol 或 1.9 kcal/mol)
  • HO—H … :OH3+ (18 kJ/mol[5] 或 4.3 kcal/mol)

成鍵原子[編輯]

典型的氫鍵中,X和Y是電負性很強的FNO原子。但CSClP甚至BrI原子在某些情況下也能形成氫鍵[2],但通常鍵能較低。

碳在與數個電負性強的原子相連時也有可能產生氫鍵。例如在氯仿CHCl3中,碳原子直接與三個氯原子相連,氯原子周圍電子雲密度較大,因而氫原子周圍即帶有部分正電荷,碳也因此參與了氫鍵的形成,扮演了質子供體的角色。

芳香環、碳碳叄鍵雙鍵在某些情況下都可作為電子供體,與強極性的X-H(如-O-H)形成氫鍵。

方向[編輯]

X-H…Y不需要,也往往不是嚴格的直線。[6] 哪怕不算分叉的氫鍵,一對一的氫鍵中也有很多鍵角處在150°-180°之間的情況,氟化氫長鏈中的氫鍵即是一例。[2]

對稱氫鍵[編輯]

通常氫是通過共價鍵與X原子相連,並通過較長和較弱的「氫鏈」與Y原子連接,即使X與Y是相同的元素,X-H和H…Y距離也往往不相等。但在M+HA2型的酸式鹽中,其中A是F或某些有機酸(如乙酸苯甲酸),氫原子恰好處於X和Y原子的中心(X-H…Y)。這一類例子被稱作對稱氫鍵,它們往往鍵能較大,鍵長較短。[7]

對稱氫鍵和不對稱氫鍵的現象往往難以解釋。一個比較認同的解釋是,將FHF離子中的氫鍵看成氫橋,類似於乙硼烷中的BHB硼橋鍵。只不過硼橋鍵是三中心兩電子鍵,而氫橋鍵是三中心四電子鍵[7]

雙氫鍵[編輯]

1995年以來,報導了許多種分子間存在一種被稱為雙氫鍵的新型分子間力,可用通式AH…HB表示。[8] 雙氫鍵的鍵長一般小於220pm,極限可能為270pm,鍵能從n~n*10kJ/mol不等,相當於傳統分子間力能量數量級。雙氫鍵的一些例子包括:BH4…HCN、BH4…CH4、LiH…NH4+、LiH…HCN、LiH…HC≡CH、H-Be-H…H-NH3+和CH4…H-NH3+等,其中以BH4…HCN雙氫鍵的鍵長為最短(171pm),鍵能也最高(75.44kJ/mol),遠大於水和HF間的氫鍵鍵能。目前對雙氫鍵的研究還不是很深入。

影響[編輯]

液態水模擬圖。照片中心的分子引出的的藍色虛線代表氫鍵。

氫鍵的影響包括:

  • 與同的化合物相比,NH3H2OHF具有反常高的熔點沸點
  • 氨在水中的非常大的溶解度與它和水分子間的氫鍵有關。
  • 甘油、無水磷酸硫酸具有較大的粘度
  • 鄰硝基苯酚中存在分子內氫鍵,因此熔點較間硝基苯酚對硝基苯酚低。
  • 中水分子在冰晶體結構中空間佔有率較低,因而冰密度較小,甚至小於水。
    • 中每個H2O分子都按四面體方向參與形成4個O-H…O氫鍵,每摩爾冰中只有2N0個氫鍵。冰的熔化熱為5.0kJ/mol,而冰中氫鍵鍵能為18.8kJ/mol,因此剛熔化的水中仍有大量的氫鍵。在4°C時,水氫鍵斷裂(密度增大)和受熱分子間距增大(密度減小)的趨勢相等,因此4°C時水密度最大。這個溫度對於水中生物至關重要,它保證了冬季時水中生物不至於因為水結冰而死亡。
  • 分子內形成氫鍵常使酸性增強。如苯甲酸的Ka=96.2×10﹣¹²,而鄰羥基苯甲酸的Ka=9.9×10-¹¹,2,6-二羥基苯甲酸可在分子內形成兩個氫鍵,它的Ka=5×10﹣9。其原因是分子內氫鍵的形成,促進了氫的解離。
  • 結晶水合物中存在由氫鍵構建的類冰骨架,其中可裝入小分子或離子。參見甲烷氣水包合物
  • C=O…H-N氫鍵使蛋白質形成α螺旋
  • DNA中兩條鏈的鹼基通過氫鍵配對,而氫鍵的飽和性和方向性使得雙螺旋的鹼基配對具有專一性,即A-T靠2個氫鍵配對而C-G靠3個氫鍵配對,見下圖:
DNA氫鍵.png

參見[編輯]

參考資料[編輯]

  1. ^ International Union of Pure and Applied Chemistry. "hydrogen bond". Compendium of Chemical Terminology Internet edition.
  2. ^ 2.0 2.1 2.2 2.3 Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements, 2nd Ed., Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
  3. ^ 對於這個數據有爭議,一般在150-250kJ/mol之間。不少人認為155kJ/mol較恰當,參見 Emsley, J. (1980). "Very Strong Hydrogen Bonds". Chemical Society Reviews 9: 91-124.  離子迴旋共振譜法得出的數據為163±4kJ/mol,參看 J. Emsley, Polyhedron 4, 489-90 (1985).也與之吻合較好。
  4. ^ J. Emsley, O. P. A. Hoyte and R. E. Overill, J. Chem. Soc., Chem. Commun., 225 (1977).
  5. ^ Omer Markovitch and Noam Agmon (2007). "Structure and energetics of the hydronium hydration shells". J. Phys. Chem. A 111 (12): 2253 - 2256. doi:10.1021/jp068960g. 
  6. ^ F. Albert Cotton, Geoffrey Wilkinson, Carlos A. Murillo, and Manfred Bochmann, Advanced Inorganic Chemistry, 6th ed.. Wiley-Interscience. ISBN 0-471-19957-5.
  7. ^ 7.0 7.1 張青蓮等。《無機化學叢書》第一卷。北京:科學出版社。
  8. ^ Chem. Commun., 1996, 14: 1633.

外部連結[編輯]